In embryonic stem cell (ESC) models for early development, spatially and temporally varying patterns of signaling and cell types emerge spontaneously. However, mechanistic insight into this dynamic self-organization is limited by a lack of methods for spatiotemporal control of signaling, and the relevance of signal dynamics and cell-to-cell variability to pattern emergence remains unknown. Here, we combine optogenetic stimulation, imaging and transcriptomic approaches to study self-organization of human ESCs (hESC) in two-dimensional (2D) culture. Morphogen dynamics were controlled via optogenetic activation of canonical Wnt/β-catenin signaling (optoWnt), which drove broad transcriptional changes and mesendoderm differentiation at high efficiency (>99% cells). When activated within cell subpopulations, optoWnt induced cell self-organization into distinct epithelial and mesenchymal domains, mediated by changes in cell migration, an epithelial to mesenchymal-like transition and TGFβ signaling. Furthermore, we demonstrate that such optogenetic control of cell subpopulations can be used to uncover signaling feedback mechanisms between neighboring cell types. These findings reveal that cell-to-cell variability in Wnt signaling is sufficient to generate tissue-scale patterning and establish a hESC model system for investigating feedback mechanisms relevant to early human embryogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10399980PMC
http://dx.doi.org/10.1242/dev.201386DOI Listing

Publication Analysis

Top Keywords

optogenetic control
8
wnt signaling
8
cell
8
stem cell
8
cell types
8
cell-to-cell variability
8
cell subpopulations
8
feedback mechanisms
8
signaling
7
optogenetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!