Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this study, an expanded graphite (EG) with nano-CuS (EG/CuS) support material with a special morphology was prepared, with EG/CuS filled with different ratios of palmitic acid (PA). Finally, a PA/EG/CuS composite phase change thermal storage material with photothermal conversion performance was synthesized. The superb chemical and thermal stability of PA/EG/CuS was demonstrated by characterization and analysis of the experiments. EG, a multi-layer structured material, provides rich binding sites for PA and nano-CuS and constructs rich thermal conductivity paths, which effectively improves the thermal conductivity of PA/EG/CuS. It is noted that the maximum thermal conductivity of PA/EG/CuS reached 0.372 W m K and the maximum phase change thermal storage capacity reached 260.4 kJ kg, which proved the excellent thermal storage properties of PA/EG/CuS. In addition, PA/EG/CuS exhibits excellent photothermal conversion performance, and the experimental results demonstrated that the best photothermal conversion efficiency of PA/EG/CuS reached 81.4%. The PA/EG/CuS developed in this study provides a promising method for fabricating excellent conductive and low leakage composite phase change materials for solar energy utilization and energy storage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt01539d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!