Background And Purpose: Recent introduction of photon counting detector (PCD) computed tomography (CT) scanners into clinical practice further improve CT angiography (CTA) depiction of orbital arterial vasculature compared to conventional energy integrating detector (EID) CT scanners. PCD-CTA of the orbit can provide a detailed arterial roadmap of the orbit which can de diagnostic on its own or serve as a helpful planning adjunct for both diagnostic and therapeutic catheter-based angiography of the orbit.
Methods: For this review, EID and PCD-CT imaging was obtained in 28 volunteers. The volume CT dose index was closely matched. A dual-energy scanning protocol was used on EID-CT. An ultra-high-resolution (UHR) scan mode was used on PCD-CT. Images were reconstructed at 0.6 mm slice thickness using a closely matched medium-sharp standard resolution (SR) kernel. High-resolution (HR) images with the sharpest quantitative kernel were also reconstructed on PCD-CT at the thinnest slice thickness of 0.2 mm. A denoising algorithm was applied to the HR image series.
Results: The imaging description of the orbital vascular anatomy presented in this work was derived from these patients' PCD-CTA images in combination with review of the literature. We found that orbital arterial anatomy is much better depicted with PCD-CTA, and this work can serve primarily as an imaging atlas of the normal orbital vascular anatomy.
Conclusion: With recent advances in technology, arterial anatomy of the orbit is much better depicted with PCD-CTA as opposed to EID-CTA. Current orbital PCD-CTA technology approaches the necessary resolution threshold for reliable evaluation of central retinal artery occlusion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/15910199231175198 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!