Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Carbapenemase-producing Enterobacterales (CPE) poses a significant challenge to infection control in healthcare settings. Active screening is recommended to prevent intra-hospital CPE transmission.
Methods: CPE screening was initiated at a 660-bed hospital in South Korea in September 2018, targeting patients previously colonized/infected or admitted to outside healthcare facilities (HCFs) within 1 month. Universal intensive care unit (ICU) screening was performed at the time of admission. After a hospital-wide CPE outbreak in July-September 2019, the screening program was enhanced by extending the indications (admission to any HCF within 6 months, receipt of hemodialysis) with weekly screening of ICU patients. The initial screening method was changed from screening cultures to the Xpert Carba-R assay. The impact was assessed by comparing the CPE incidence per 1000 admissions before (phase 1, September 2018-August 2019) and after instituting the enhanced screening program (phase 2, September 2019-December 2020).
Results: A total of 13,962 (2,149 and 11,813 in each phase) were screened as indicated, among 49,490 inpatients, and monthly screening compliance increased from 18.3 to 93.5%. Compared to phase 1, the incidence of screening positive patients increased from 1.2 to 2.3 per 1,000 admissions (P = 0.005) during phase 2. The incidence of newly detected CPE patients was similar (3.1 vs. 3.4, P = 0.613) between two phases, but the incidence of hospital-onset CPE patients decreased (1.9 vs. 1.1, P = 0.018). A significant decrease was observed (0.5 to 0.1, P = 0.014) in the incidence of patients who first confirmed CPE positive through clinical cultures without a preceding positive screening. Compared to phase 1, the median exposure duration and number of CPE contacts were also markedly reduced in phase 2: 10.8 days vs. 1 day (P < 0.001) and 11 contacts vs. 1 contact (P < 0.001), respectively. During phase 2, 42 additional patients were identified by extending the admission screening indications (n = 30) and weekly in-ICU screening (n = 12).
Conclusions: The enhanced screening program enabled us to identify previously unrecognized CPE patients in a rapid manner and curtailed a hospital-wide CPE outbreak. As CPE prevalence increases, risk factors for CPE colonization can broaden, and hospital prevention strategies should be tailored to the changing local CPE epidemiology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10318785 | PMC |
http://dx.doi.org/10.1186/s13756-023-01270-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!