The field of biomedical design and manufacturing has been rapidly evolving, with implants and grafts featuring complex 3D design constraints and materials distributions. By combining a new coding-based design and modeling approach with high-throughput volumetric printing, a new approach is demonstrated to transform the way complex shapes are designed and fabricated for biomedical applications. Here, an algorithmic voxel-based approach is used that can rapidly generate a large design library of porous structures, auxetic meshes and cylinders, or perfusable constructs. By deploying finite cell modeling within the algorithmic design framework, large arrays of selected auxetic designs can be computationally modeled. Finally, the design schemes are used in conjunction with new approaches for multi-material volumetric printing based on thiol-ene photoclick chemistry to rapidly fabricate complex heterogeneous shapes. Collectively, the new design, modeling and fabrication techniques can be used toward a wide spectrum of products such as actuators, biomedical implants and grafts, or tissue and disease models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502818PMC
http://dx.doi.org/10.1002/advs.202300912DOI Listing

Publication Analysis

Top Keywords

volumetric printing
12
design
8
algorithmic design
8
photoclick chemistry
8
multi-material volumetric
8
implants grafts
8
design modeling
8
synergizing algorithmic
4
design photoclick
4
chemistry multi-material
4

Similar Publications

Purpose: This study aimed to clarify the applicability of smartphone-based three-dimensional (3D) surface imaging for clinical use in oral and maxillofacial surgery, comparing two smartphone-based approaches to the gold standard.

Methods: Facial surface models (SMs) were generated for 30 volunteers (15 men, 15 women) using the Vectra M5 (Canfield Scientific, USA), the TrueDepth camera of the iPhone 14 Pro (Apple Inc., USA), and the iPhone 14 Pro with photogrammetry.

View Article and Find Full Text PDF

Green Recycling for Polypropylene Components by Material Extrusion.

Polymers (Basel)

December 2024

Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70100 Bari, Italy.

High volumetric shrinkage and rheological behavior of polypropylene (PP) are the main problems that make material extrusion (MEX) uncommon for this material. The complexity is raised when recycled materials are used. This research covered different aspects of the MEX process of virgin and recycled PP, from the analysis of rough materials to the mechanical evaluation of the final products.

View Article and Find Full Text PDF

Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts.

View Article and Find Full Text PDF

Lattice structures are an innovative solution to increase the strength-to-weight ratio of a structure. In this study, two polymeric hybrid lattice structures-"FRB" (a heterogenous structure which is indeed a BCC structure reinforced by FCC unit cells dispersed in a way to form a chessboard pattern in each layer) and the "Multifunctional" (a homogenous structure whose unit cells are a combination of FCC and BCC unit cells where their central nodes are connected)-are proposed, fabricated via liquid crystal display 3D printing technique, and their mechanical characteristics are evaluated under quasi-static loading, experimentally and numerically. The results indicate a 15.

View Article and Find Full Text PDF

Purpose: This systematic review aims to assess the impact of different 3D printing orientations on the physico-mechanical properties, volumetric change, and accuracy of additively manufactured ceramic specimens, as well as their restorations.

Study Selection: The web database containing records for building orientation of 3D-printed ceramics until January 2024 was searched, with no language limitations. PRISMA 2020 guidelines were followed, and the risk of bias was evaluated using the modified CONSORT checklist for laboratory studies on dental materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!