A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microscopic evidence of sandstone deterioration and damage by fungi isolated from the Angkor monuments in simulation experiments. | LitMetric

Microscopic evidence of sandstone deterioration and damage by fungi isolated from the Angkor monuments in simulation experiments.

Sci Total Environ

Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan; Independent Administrative Institution, Tokyo National Research Institute for Cultural Properties, 13-43 Ueno-Park, Taito-ku, Tokyo 110-8713, Japan. Electronic address:

Published: October 2023

The Angkor monuments have been registered on the World Cultural Heritage List of UNESCO, while the buildings built mostly of sandstone are suffering from serious deterioration and damage. Microorganisms are one of the leading causes for the sandstone deterioration. Identification of the mechanisms underlying the biodeterioration is of significance because it reveals the biochemical reaction involved so that effective conservation and restoration of cultural properties can be achieved. In this study, the fungal colonization and biodeterioration of sandstone in simulation experiments were examined using confocal reflection microscopy (CRM) and scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). Aspergillus sp. strain AW1 and Paecilomyces sp. strain BY8 isolated from the deteriorated sandstone of Angkor Wat and Bayon of Angkor Thom, respectively, were inoculated and incubated with the sandstone used for construction of Angkor Wat. With CRM, we could visualize that strain AW1 tightly attached to and broke in the sandstone with extension of the hyphae. Quantitative imaging analyses showed that the sandstone surface roughness increased and the cavities formed under the fungal hyphae deepened during the incubation of strains AW1 and BY8. These highlighted that the massive growth of fungi even under the culture conditions was associated with the cavity formation of the sandstone and its expansion. Furthermore, SEM-EDS indicated the flat and Si-rich materials, presumably quartz and feldspar, were found frequently at the intact sandstone surface. But the flatness was lost during the incubation, possibly due to the detachment of the Si-rich mineral particles by the fungal deterioration. Consequently, this study proposed a biodeterioration model of the sandstone in that the hyphae of fungi elongated on the surface of the sandstone to penetrate into the soft and porous sandstone matrix, damaging the matrix and gradually destabilize the hard and Si-rich minerals, such as quartz and feldspar, to the collapse and cavities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.165265DOI Listing

Publication Analysis

Top Keywords

sandstone
13
sandstone deterioration
8
deterioration damage
8
angkor monuments
8
simulation experiments
8
strain aw1
8
angkor wat
8
sandstone surface
8
quartz feldspar
8
angkor
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!