The intrinsically disordered, epigenetic factor RYBP binds to the citrullinating enzyme PADI4 in cancer cells.

Int J Biol Macromol

IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI) - Unidad mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain. Electronic address:

Published: August 2023

AI Article Synopsis

  • RYBP is an intrinsically disordered protein involved in transcription regulation and shows potential interactions with the well-folded enzyme PADI4, which converts arginine to citrulline.
  • The study found that RYBP and PADI4 associate in the nucleus and cytosol of cancer cell lines, and their binding was confirmed both in vitro and through other assays.
  • This interaction may affect cancer cell proliferation when combined with PARP inhibitors, suggesting a possible role in cancer development through the citrullination of RYBP.

Article Abstract

RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 μM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.125632DOI Listing

Publication Analysis

Top Keywords

intrinsically disordered
8
cancer development
8
rybp
6
disordered epigenetic
4
epigenetic factor
4
factor rybp
4
rybp binds
4
binds citrullinating
4
citrullinating enzyme
4
enzyme padi4
4

Similar Publications

The molecular basis for the liquid-liquid phase separation (LLPS) behavior of various biomolecular components in the cell is the formation of multivalent and low-affinity interactions. When the content of these components exceeds a certain critical concentration, the molecules will spontaneously coalesce to form a new liquid phase; i.e.

View Article and Find Full Text PDF

Heme is known to bind to the intrinsically disordered region (IDR) to regulate protein function. The binding of heme to the IDR of transcription factor BACH2 promotes plasma cell differentiation, but the molecular basis is unknown. Heme was found to increase BACH2 IDR interaction with TANK-binding kinase 1 (TBK1).

View Article and Find Full Text PDF

DOPAC as a modulator of α-Synuclein and E46K interactions with membrane: Insights into binding dynamics.

Int J Biol Macromol

January 2025

Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy. Electronic address:

α-Synuclein (Syn) is an intrinsically disordered protein, abundant in presynaptic neurons. It is a constituent of the Lewis Body inclusions as amyloid fibrils, in Parkinson's disease patients. It populates an ensemble of conformations and floats between the free random coil and the membrane-bound α-helical species.

View Article and Find Full Text PDF

Correlating Disordered Activation Domain Ensembles with Gene Expression Levels.

Biophys Rep (N Y)

January 2025

Department of Chemistry and Biochemistry, University of California Merced, Merced, 95343; Department of Chemistry, Syracuse University, Syracuse, 13244.

Transcription factor proteins bind to specific DNA promoter sequences and initiate gene transcription. These proteins often contain intrinsically disordered activation domains (ADs) that regulate their transcriptional activity. Like other disordered protein regions, ADs do not have a fixed three-dimensional structure and instead exist in an ensemble of conformations.

View Article and Find Full Text PDF

Assignment of the N-terminal domain of mouse cGAS.

Biomol NMR Assign

January 2025

Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.

Cyclic GMP-AMP synthase (cGAS) is a DNA-sensing enzyme that is a member of the nucleotidyltransferase (NTase) family and functions as a DNA sensor. The protein is comprised of a catalytic NTase core domain and an unstructured hypervariable N-terminal domain (NTD) that was reported to increase protein activity by providing an additional DNA-binding surface. We report nearly complete H, N, and C backbone chemical-shift assignments of mouse cGAS NTD (residues 5-146), obtained with a set of 3D and 4D solution NMR experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!