Liquefied sake lees, a by-product of Japanese sake, is rich in Saccharomyces cerevisiae, proteins, and prebiotics derived from rice and yeast. Previous studies have reported that Saccharomyces cerevisiae fermentation products improved the health, growth, and faecal characteristics of preweaning calves. This study investigated the effects of adding liquefied sake lees to milk replacer on the growth performance, faecal characteristics, and blood metabolites of preweaning Japanese Black calves from 6 to 90 days of age. Twenty-four Japanese Black calves at 6 days of age were randomly assigned to one of three treatments: No liquefied sake lees (C, n = 8), 100 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (LS, n = 8), and 200 g/d (on a fresh matter basis) liquefied sake lees mixed with milk replacer (HS, n = 8). The intake of milk replacer and calf starter, as well as, the average daily gain did not differ between the treatments. The number of days counted with faecal score 1 in LS was higher than in HS (P < 0.05), while the number of days with diarrhoea medication in LS and C was lower than HS (P < 0.05). The faecal n-butyric acid concentration tended to be higher in LS compared to C (P = 0.060). The alpha diversity index (Chao1) was higher in HS than in C and LS at 90 days of age (P < 0.05). The principal coordinate analysis (PCoA) using weighted UniFrac distance showed that the bacterial community structures in faeces among the treatments at 90 days of age were significantly different (P < 0.05). The plasma β-hydroxybutyric acid concentration, an indicator of rumen development, was higher for LS than in C throughout the experiment (P < 0.05). These results suggested that adding liquefied sake lees up to 100 g/d (on a fresh matter basis) might promote rumen development in preweaning Japanese Black calves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.animal.2023.100873 | DOI Listing |
Animal
July 2023
Department of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
Anim Sci J
December 2022
Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
Biosci Biotechnol Biochem
August 2019
a Safety and Quality Research Division , National Research Institute of Brewing, Higashi-Hiroshima , Japan.
Sake cake contains rice-derived components, as well as cell components and metabolites of and . In this study, the effect of food processing on sake cake (sake-kasu) ingredients was investigated. Sake cake, obtained through brewing liquefied rice, was heat-dried (HD) or freeze-dried (FD) and analyzed.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
May 2008
Research Institute, Gekkeikan Sake Co., Ltd., Fushimi-ku, Kyoto 612-8385, Japan.
Aspergillus oryzae glucoamylases encoded by glaA and glaB, and Rhizopus oryzae glucoamylase, were displayed on the cell surface of sake yeast Saccharomyces cerevisiae GRI-117-UK and laboratory yeast S. cerevisiae MT8-1. Among constructed transformants, GRI-117-UK/pUDGAA, displaying glaA glucoamylase, produced the most ethanol from liquefied starch, although MT8-1/pUDGAR, displaying R.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
May 2000
Department of Bioengineering, Akita Research Institute of Food and Brewing, Arayamachi, Japan.
The glucose isomerase from Streptomyces olivaceoviridis E-86 was purified by chromatographic procedures, showing one single protein band in the SDS-PAGE. The enzyme had high acid stability, and there was no loss in enzyme activity at pH 5.0 after incubation at 60 degrees C for 30 hr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!