Toxicity of β-blockers is one of the most common causes of poison-induced cardiogenic shock throughout the world. Therefore, methodologies for in vivo removal of the drugs from the body have been under investigation. Intralipid emulsion (ILE) is a common commercial lipid emulsion used for parenteral nutrition, but it has also been administered to patients suffering from drug toxicities. In this work, a set of β-blockers of different hydrophobicity's (log K values ranging from 0.16 to 3.8) were investigated. The relative strength of the interactions between these compounds and the ILE was quantitatively assessed by means of binding constants and adsorption constants of the formed β-blocker-ILE complexes. The binding constants were determined by capillary electrokinetic chromatography and the adsorption constants were calculated based on different adsorption isotherms. Expectedly, the binding constants were strongly related to the log K values of the β-blockers. The binding and adsorption constants also show that less hydrophobic β-blockers interact with ILE, suggesting that this emulsion could be useful for capturing such compounds in cases of their overdoses. Thus, the use of ILE for treatment of toxicities caused by a larger range of β-blockers is worth further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2023.115554DOI Listing

Publication Analysis

Top Keywords

binding constants
12
adsorption constants
12
capillary electrokinetic
8
electrokinetic chromatography
8
intralipid emulsion
8
log values
8
β-blockers
6
constants
6
chromatography studying
4
studying interactions
4

Similar Publications

This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.

View Article and Find Full Text PDF

Silicon (Si) is considered a promising anode material for next-generation lithium-ion batteries due to its high theoretical specific capacity and earth-abundancy. However, challenges such as significant volume expansion, unstable solid electrolyte interphase (SEI) formation in incompatible electrolytes, and slow lithium-ion transport lead to its poor cycling and rate performance. In this work, it is demonstrated that superior cyclability and rate capability of Si anodes can be achieved using ethyl fluoroacetate (EFA) and fluoroethylene carbonate (FEC) solvents with low binding energy with Li but with sufficiently high relative dielectric constants.

View Article and Find Full Text PDF

The formation and architecture of surface-initiated polymer brush gene delivery complexes.

J Colloid Interface Sci

December 2024

School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:

Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.

View Article and Find Full Text PDF

Design and synthesis of a carbohydrate-derived chemosensor for selective Ni(II) ion detection: A turn-off approach.

Carbohydr Res

January 2025

Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India. Electronic address:

Nickel, an essential transition metal, plays a vital role in biological systems and industries. However, exposure to nickel can cause severe health issues, such as asthma, dermatitis, pneumonitis, neurological disorders, and cancers of the nasal cavity and lungs. Due to nickel's toxicity and extensive industrial use, efficient sensors for detecting Ni ions in environmental and biological contexts are essential.

View Article and Find Full Text PDF

This study extends previous research, particularly focusing on patented scientific objects No. ID: PL 240 353 B1, investigating the physicochemical properties of the methyl 3-azido- and 3-amino-2,3-dideoxysaccharides with a nucleoside scaffold similar to 3'-azidothymidine (AZT). The study utilizes multiwavelength spectrophotometric and potentiometric methods to evaluate the ionization of the saccharide units in aqueous solutions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!