Phylum Tardigrada (water bears), well known for their cryptobiosis, includes small invertebrates with four paired limbs and is divided into two classes: Eutardigrada and Heterotardigrada. The evolutionary origin of Tardigrada is known to lie within the lobopodians, which are extinct soft-bodied worms with lobopodous limbs mostly discovered at sites of exceptionally well-preserved fossils. Contrary to their closest relatives, onychophorans and euarthropods, the origin of morphological characters of tardigrades remains unclear, and detailed comparison with the lobopodians has not been well explored. Here, we present detailed morphological comparison between tardigrades and Cambrian lobopodians, with a phylogenetic analysis encompassing most of the lobopodians and three panarthropod phyla. The results indicate that the ancestral tardigrades likely had a Cambrian lobopodian-like morphology and shared most recent ancestry with the luolishaniids. Internal relationships within Tardigrada indicate that the ancestral tardigrade had a vermiform body shape without segmental plates, but possessed cuticular structures surrounding the mouth opening, and lobopodous legs terminating with claws, but without digits. This finding is in contrast to the long-standing stygarctid-like ancestor hypothesis. The highly compact and miniaturized body plan of tardigrades evolved after the tardigrade lineage diverged from an ancient shared ancestor with the luolishaniids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334802 | PMC |
http://dx.doi.org/10.1073/pnas.2211251120 | DOI Listing |
Nature
September 2024
Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China.
The Cambrian radiation of euarthropods can be attributed to an adaptable body plan. Sophisticated brains and specialized feeding appendages, which are elaborations of serially repeated organ systems and jointed appendages, underpin the dominance of Euarthropoda in a broad suite of ecological settings. The origin of the euarthropod body plan from a grade of vermiform taxa with hydrostatic lobopodous appendages ('lobopodian worms') is founded on data from Burgess Shale-type fossils.
View Article and Find Full Text PDFCommun Biol
July 2024
Yuxi Museum, 653100, Yuxi, China.
Lobopodians represent a key step in the early history of ecdysozoans since they were the first animals to evolve legs within this clade. Their Cambrian representatives share a similar body plan with a typically cylindrical annulated trunk and a series of non-jointed legs. However, they do not form a monophyletic group and likely include ancestors of the three extant panarthropod lineages (Tardigrada, Onychophora, Euarthropoda).
View Article and Find Full Text PDFHist Biol
April 2023
Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA.
The Spence Shale Member of the Langston Formation in northern Utah and southern Idaho preserves generally non-biomineralized fossil assemblages referred to as the Spence Shale Lagerstätte. The biota of this Lagerstätte is dominated by panarthropods, both biomineralized and soft-bodied examples, but also preserves diverse infaunal organisms, including species of scalidophorans, echinoderms, lobopodians, stalked filter feeders, and various problematic taxa. To date, however, only a single annelid fossil, originally assigned to sp.
View Article and Find Full Text PDFNat Ecol Evol
April 2024
Université de Lyon, Université Claude Bernard Lyon 1, École Normale Supérieure de Lyon, CNRS, UMR5276, LGL-TPE, Villeurbanne, France.
Early Palaeozoic sites with soft-tissue preservation are predominantly found in Cambrian rocks and tend to capture past tropical and temperate ecosystems. In this study, we describe the diversity and preservation of the Cabrières Biota, a newly discovered Early Ordovician Lagerstätte from Montagne Noire, southern France. The Cabrières Biota showcases a diverse polar assemblage of both biomineralized and soft-bodied organisms predominantly preserved in iron oxides.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2023
Division of Earth Sciences, Korea Polar Research Institute, Yeonsu-gu, Incheon 21990, Korea.
Phylum Tardigrada (water bears), well known for their cryptobiosis, includes small invertebrates with four paired limbs and is divided into two classes: Eutardigrada and Heterotardigrada. The evolutionary origin of Tardigrada is known to lie within the lobopodians, which are extinct soft-bodied worms with lobopodous limbs mostly discovered at sites of exceptionally well-preserved fossils. Contrary to their closest relatives, onychophorans and euarthropods, the origin of morphological characters of tardigrades remains unclear, and detailed comparison with the lobopodians has not been well explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!