Objectives: Image monitoring is essential to monitor response to neoadjuvant chemotherapy (NACT). Whilst breast MRI is the gold-standard technique, evidence suggests contrast-enhanced spectral mammography (CESM) is comparable. We investigate whether the addition of digital breast tomosynthesis (DBT) to CESM increases the accuracy of response prediction.

Methods: Women receiving NACT for breast cancer were included. Imaging with CESM+DBT and MRI was performed post-NACT. Imaging appearance was compared with pathological specimens. Accuracy for predicting pathological complete response (pCR) and concordance with size of residual disease was calculated.

Results: Sixteen cancers in 14 patients were included, 10 demonstrated pCR. Greatest accuracy for predicting pCR was with CESM enhancement (accuracy: 81.3%, sensitivity: 100%, specificity: 57.1%), followed by MRI (accuracy: 62.5%, sensitivity: 44.4%, specificity: 85.7%). Concordance with invasive tumour size was greater for CESM enhancement than MRI, concordance-coefficients 0.70 0.66 respectively. MRI demonstrated greatest concordance with whole tumour size followed by CESM+microcalcification, concordance coefficients 0.86 0.69. DBT did not improve accuracy for prediction of pCR or residual disease size. CESM+DBT underestimated size of residual disease, MRI overestimated but no significant differences were seen (>0.05).

Conclusions: CESM is similar to MRI for predicting residual disease post-NACT. Size of enhancement alone demonstrates best concordance with invasive disease. Inclusion of residual microcalcification improves concordance with ductal carcinoma in situ. The addition of DBT to CESM does not improve accuracy.

Advances In Knowledge: The addition ofDBT to CESM does not improve NACT response prediction. CESM enhancement has greatest accuracy for residual invasive disease, CESM+calcification has greater accuracy for residual in situ disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10392651PMC
http://dx.doi.org/10.1259/bjr.20220921DOI Listing

Publication Analysis

Top Keywords

residual disease
16
cesm enhancement
12
accuracy
9
response neoadjuvant
8
neoadjuvant chemotherapy
8
improve accuracy
8
contrast-enhanced spectral
8
mri
8
breast mri
8
cesm
8

Similar Publications

Purpose: Despite advances in the treatment of adult acute lymphoblastic leukemia (ALL), relapse remains the most significant challenge in improving prognosis. Measurable residual disease (MRD) assessment can predict bone marrow relapse based on MRD positivity. As access to innovative therapies remains limited because of the high cost, chemotherapy is the widely utilized treatment option.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer-related death by 2030. Early identification is rare, with a 5-year overall survival (OS) of less than 10%. Advances in the understanding of PDAC tumor biology are needed to improve these outcomes.

View Article and Find Full Text PDF

Background: The management of pediatric acute myeloid leukemia (AML) is based on the prognostic risk classification of initial leukemia. Targeted next-generation sequencing (NGS) is a reliable method used to identify recurrently mutated genes of pediatric AML and associated prognosis.

Methods: In this study, we retrospectively evaluated the prognostic, and therapeutic utility of a targeted NGS panel covering twenty-five genes, in 21 children with de novo and 8 with relapsed or secondary AML.

View Article and Find Full Text PDF

Periodontal disease stands the leading cause of tooth loss in adults. While scaling and root planning is considered the "gold standard" treatment, it is often insufficient in efficiently eliminating anaerobic bacteria from deep periodontal pockets. In this work, an antibiotic-free and photo-curing hyaluronic acid-Janus (H-Janus) antibacterial pack was developed to inhibit the growth and colonization of residual bacteria within the pockets for reducing the recurrence of periodontitis.

View Article and Find Full Text PDF

Circulating tumor DNA (ctDNA) detection can predict clinical risk in early-stage tumors. However, clinical applications are constrained by the sensitivity of clinically validated ctDNA detection approaches. NeXT Personal is a whole-genome-based, tumor-informed platform that has been analytically validated for ultrasensitive ctDNA detection at 1-3 ppm of ctDNA with 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!