Automatic depression severity assessment with deep learning using parameter-efficient tuning.

Front Psychiatry

Department of Electrical and Computer Engineering & Ingenuity Labs, Queen's University, Kingston, ON, Canada.

Published: June 2023

Introduction: To assist mental health care providers with the assessment of depression, research to develop a standardized, accessible, and non-invasive technique has garnered considerable attention. Our study focuses on the application of deep learning models for automatic assessment of depression severity based on clinical interview transcriptions. Despite the recent success of deep learning, the lack of large-scale high-quality datasets is a major performance bottleneck for many mental health applications.

Methods: A novel approach is proposed to address the data scarcity problem for depression assessment. It leverages both pretrained large language models and parameter-efficient tuning techniques. The approach is built upon adapting a small set of tunable parameters, known as prefix vectors, to guide a pretrained model towards predicting the Patient Health Questionnaire (PHQ)-8 score of a person. Experiments were conducted on the Distress Analysis Interview Corpus - Wizard of Oz (DAIC-WOZ) benchmark dataset with 189 subjects, partitioned into training, development, and test sets. Model learning was done on the training set. Prediction performance mean and standard deviation of each model, with five randomly-initialized runs, were reported on the development set. Finally, optimized models were evaluated on the test set.

Results: The proposed model with prefix vectors outperformed all previously published methods, including models which utilized multiple types of data modalities, and achieved the best reported performance on the test set of DAIC-WOZ with a root mean square error of 4.67 and a mean absolute error of 3.80 on the PHQ-8 scale. Compared to conventionally fine-tuned baseline models, prefix-enhanced models were less prone to overfitting by using far fewer training parameters (<6% relatively).

Discussion: While transfer learning through pretrained large language models can provide a good starting point for downstream learning, prefix vectors can further adapt the pretrained models effectively to the depression assessment task by only adjusting a small number of parameters. The improvement is in part due to the fine-grain flexibility of prefix vector size in adjusting the model's learning capacity. Our results provide evidence that prefix-tuning can be a useful approach in developing tools for automatic depression assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308283PMC
http://dx.doi.org/10.3389/fpsyt.2023.1160291DOI Listing

Publication Analysis

Top Keywords

deep learning
12
depression severity
8
parameter-efficient tuning
8
mental health
8
assessment depression
8
prefix vectors
8
models
6
automatic depression
4
assessment
4
severity assessment
4

Similar Publications

Purpose: To develop an educational, interactive, ultra-high resolution, in vivo magnetic resonance (MR) neurography atlas for direct visualization of the brachial plexus and upper extremity.

Methods: A total of 16 adult volunteers without known peripheral neuropathy underwent magnetic resonance (MR) neurography of the brachial plexus and upper extremity. To improve vascular suppression, subjects received an intravenous infusion of ferumoxytol.

View Article and Find Full Text PDF

Accurate meteorological observation data is of great importance to human production activities. Meteorological observation systems have been advancing toward automation, intelligence, and informatization. Yet, instrumental malfunctions and unstable sensor node resources could cause significant deviations of data from the actual characteristics it should reflect.

View Article and Find Full Text PDF

Rapidly detecting hydrogen leaks is critical for the safe large-scale implementation of hydrogen technologies. However, to date, no technically viable sensor solution exists that meets the corresponding response time targets under technically relevant conditions. Here, we demonstrate how a tailored long short-term transformer ensemble model for accelerated sensing (LEMAS) speeds up the response of an optical plasmonic hydrogen sensor by up to a factor of 40 and eliminates its intrinsic pressure dependence in an environment emulating the inert gas encapsulation of large-scale hydrogen installations by accurately predicting its response value to a hydrogen concentration change before it is physically reached by the sensor hardware.

View Article and Find Full Text PDF

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!