Oxygen consumption rate to evaluate mitochondrial dysfunction and toxicity in cardiomyocytes.

Toxicol Res

Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 Republic of Korea.

Published: July 2023

The increase in the types and complexity of diseases has led to significant advances in diagnostic techniques and the availability of effective therapies. Recent studies have focused on the role of mitochondrial dysfunction in the pathogenesis of cardiovascular diseases (CVDs). Mitochondria are important organelles in cells that generate energy. Besides the production of adenosine triphosphate (ATP), the energy currency of cells, mitochondria are also involved in thermogenesis, control of intracellular calcium ions (Ca), apoptosis, regulation of reactive oxygen species (ROS), and inflammation. Mitochondrial dysfunction has been implicated in several diseases including cancer, diabetes, some genetic diseases, and neurogenerative and metabolic diseases. Furthermore, the cardiomyocytes of the heart are rich in mitochondria due to the large energy requirement for optimal cardiac function. One of the main causes of cardiac tissue injuries is believed to be mitochondrial dysfunction, which occurs via complicated pathways which have not yet been completely elucidated. There are various types of mitochondrial dysfunction including mitochondrial morphological change, unbalanced levels of substances to maintain mitochondria, mitochondrial damage by drugs, and mitochondrial deletion and synthesis errors. Most of mitochondrial dysfunctions are linked with symptoms and diseases, thus we focus on parts of mitochondrial dysfunction about fission and fusion in cardiomyocytes, and ways to understand the mechanism of cardiomyocyte damage by detecting oxygen consumption levels in the mitochondria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313613PMC
http://dx.doi.org/10.1007/s43188-023-00183-3DOI Listing

Publication Analysis

Top Keywords

mitochondrial dysfunction
24
mitochondrial
10
oxygen consumption
8
dysfunction
6
diseases
6
mitochondria
5
consumption rate
4
rate evaluate
4
evaluate mitochondrial
4
dysfunction toxicity
4

Similar Publications

Changes in brain mitochondrial metabolism are coincident with functional decline; however, direct links between the two have not been established. Here, we show that mitochondrial targeting via the adiponectin receptor activator AdipoRon (AR) clears neurofibrillary tangles (NFTs) and rescues neuronal tauopathy-associated defects. AR reduced levels of phospho-tau and lowered NFT burden by a mechanism involving the energy-sensing kinase AMPK and the growth-sensing kinase GSK3b.

View Article and Find Full Text PDF

Puerarin pretreatment provides protection against myocardial ischemia/reperfusion injury via inhibiting excessive autophagy and apoptosis by modulation of HES1.

Sci Rep

January 2025

Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.

The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.

View Article and Find Full Text PDF

Doxorubicin, a representative drug of the anthracycline class, is widely used in cancer treatment. However, Doxorubicin-induced cardiotoxicity (DIC) presents a significant challenge in its clinical application. Mitochondrial dysfunction plays a central role in DIC, primarily through disrupting mitochondrial dynamics.

View Article and Find Full Text PDF

Delayed atorvastatin delivery promotes recovery after experimental spinal cord injury.

Neurotherapeutics

January 2025

Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA; Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA; Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Spinal cord injury (SCI) significantly alters gene expression, potentially impeding functional recovery. This study investigated the effects of atorvastatin, a widely prescribed cholesterol-lowering drug, on gene expression and functional recovery in a chronic murine SCI model. Female C57BL/6J mice underwent moderate 0.

View Article and Find Full Text PDF

Long non-coding RNA XR008038 promotes the myocardial ischemia/reperfusion injury development through increasing the expressions of galectin-3.

Int J Cardiol

January 2025

Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:

Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!