Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
DosS is a heme-sensor histidine kinase that responds to redox-active stimuli in mycobacterial environments by triggering dormancy transformation. Sequence comparison of the catalytic ATP-binding (CA) domain of DosS to other well-studied histidine kinases suggests that it possesses a rather short ATP-lid. This feature has been thought to inhibit DosS kinase activity by blocking ATP binding in the absence of interdomain interactions with the dimerization and histidine phospho-transfer (DHp) domain of full-length DosS. Here, we use a combination of computational modeling, structural biology, and biophysical studies to re-examine ATP-binding modalities in DosS's CA domain. We show that the closed lid conformation observed in protein crystal structures of DosS CA is caused by the presence of a zinc cation in the ATP binding pocket that coordinates with a glutamate residue on the ATP-lid. Furthermore, circular dichroism (CD) studies and comparisons of DosS CA crystal structure with its AlphaFold model and homologous DesK reveal that a key N-box alpha-helix turn of the ATP pocket manifests as a random coil in the zinc-coordinated protein crystal structure. We note that this closed lid conformation and the random-coil transformation of an N-box alpha-helix turn are artifacts arising from the millimolar zinc concentration used in DosS CA crystallization conditions. In contrast, in the absence of zinc, we find that the short ATP-lid of DosS CA has significant conformational flexibility and can bind ATP ( = 53 ± 13 μM). We conclude that DosS CA is almost always bound to ATP under physiological conditions (1-5 mM ATP, sub-nanomolar free zinc) in the bacterial environment. Our findings elucidate the conformational adaptability of the short ATP-lid, its relevance to ATP binding in DosS CA and provide insights that extends to 2988 homologous bacterial proteins containing such ATP-lids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312584 | PMC |
http://dx.doi.org/10.1101/2023.05.29.542785 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!