Introduction: The High mortality rates associated with heart failure (HF) have propelled the strategy of drug repurposing, which seeks new therapeutic uses for existing, approved drugs to enhance the management of HF symptoms effectively. An emerging trend focuses on utilizing real-world data, like EHR, to mimic randomized controlled trials (RCTs) for evaluating treatment outcomes through what are known as emulated trials (ET). Nonetheless, the intricacies inherent in EHR data-comprising detailed patient histories in databases, the omission of certain biomarkers or specific diagnostic tests, and partial records of symptoms-introduce notable discrepancies between EHR data and the stringent standards of RCTs. This gap poses a substantial challenge in conducting an ET to accurately predict treatment efficacy.
Objective: The objective of this research is to predict the efficacy of drugs repurposed for HF in randomized trials by leveraging EHR in ET.
Methods: We proposed an ET framework to predict drug efficacy, integrating target prediction based on biomedical databases with statistical analysis using EHR data. Specifically, we developed a novel target prediction model that learns low-dimensional representations of drug molecules, protein sequences, and diverse biomedical associations from a knowledge graph. Additionally, we crafted strategies to improve the prediction by considering the interactions between HF drugs and biological factors in the context of HF prognostic markers.
Results: Our validation of the drug-target prediction model against the BETA benchmark demonstrated superior performance, with an average AUCROC of 97.7%, PRAUC of 97.4%, F1 score of 93.1%, and a General Score of 96.1%, surpassing existing baseline algorithms. Further analysis of our ET framework on identifying 17 repurposed drugs-derived from 266 phase 3 HF RCTs-using data from 59,000 patients at the Mayo Clinic highlighted the framework's remarkable predictive accuracy. This analysis took into account various factors such as biological variables (e.g., gender, age, ethnicity), HF medications (e.g., ACE inhibitors, Beta-blockers, ARBs, Loop Diuretics), types of HF (HFpEF and HFrEF), confounders, and prognostic markers (e.g., NT-proBNP, bUn, creatinine, and hemoglobin). The ET framework significantly improved the accuracy compared to the baseline efficacy analysis that utilized EHR data. Notably, the best results were improved in AUC-ROC from 75.71% to 93.57% and in PRAUC from 78.66% to 90.34%, compared to the baseline models.
Conclusion: Our study presents an ET framework that significantly enhances drug efficacy emulation by integrating EHR-based analysis with target prediction. We demonstrated substantial success in predicting the efficacy of 17 HF drugs repurposed for phase 3 RCTs, showcasing the framework's potential in advancing HF treatment strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312819 | PMC |
http://dx.doi.org/10.1101/2023.05.25.23290531 | DOI Listing |
Qual Manag Health Care
January 2025
Author Affiliations: Source Healthcare, Santa Monica, California.
Background And Objectives: Retrospective studies examining errors within a surgical scheduling setting do not fully represent the effects of human error involved in transcribing critical patient health information (PHI). These errors can negatively impact patient care and reduce workplace efficiency due to insurance claim denials and potential sentinel events. Previous reports underscore the burden physicians face with prior authorizations which may lead to serious adverse events or the abandonment of treatment due to these delays.
View Article and Find Full Text PDFStat Med
February 2025
Department of Biostatistics and Health Data Science, University of Pittsburgh, Pittsburgh, Pennsylvania.
An important aspect of precision medicine focuses on characterizing diverse responses to treatment due to unique patient characteristics, also known as heterogeneous treatment effects (HTE) or individualized treatment effects (ITE), and identifying beneficial subgroups with enhanced treatment effects. Estimating HTE with right-censored data in observational studies remains challenging. In this paper, we propose a pseudo-ITE-based framework for analyzing HTE in survival data, which includes a group of meta-learners for estimating HTE, a variable importance metric for identifying predictive variables to HTE, and a data-adaptive procedure to select subgroups with enhanced treatment effects.
View Article and Find Full Text PDFCirc Genom Precis Med
January 2025
Mary and Steve Wen Cardiovascular Division, Department of Medicine, University of California, Los Angeles. (W.F., N.D.W.).
Background: Lp(a; Lipoprotein[a]) is a predictor of atherosclerotic cardiovascular disease (ASCVD); however, there are few algorithms incorporating Lp(a), especially from real-world settings. We developed an electronic health record (EHR)-based risk prediction algorithm including Lp(a).
Methods: Utilizing a large EHR database, we categorized Lp(a) cut points at 25, 50, and 75 mg/dL and constructed 10-year ASCVD risk prediction models incorporating Lp(a), with external validation in a pooled cohort of 4 US prospective studies.
Am J Prev Cardiol
December 2024
Department of Family Medicine, Oregon Health & Science University, USA.
Background: Statins have been shown to reduce atherosclerotic cardiovascular disease (ASCVD). In the United States, statins are underutilized, and the literature suggests women and Latine individuals received even fewer prescriptions than men even when eligible. No study has shown how statins are prescribed when looking at language, ethnicity, and considering sex.
View Article and Find Full Text PDFEClinicalMedicine
February 2025
Division of Respiratory Medicine, Department of Pediatrics, University of California San Diego, Rady Children's Hospital of San Diego, San Diego, CA, USA.
Background: Children from racial and ethnic minority groups are at greater risk for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, but it is unclear whether they have increased risk for post-acute sequelae of SARS-CoV-2 (PASC). Our objectives were to assess whether the risk of respiratory and neurologic PASC differs by race/ethnicity and social drivers of health.
Methods: We conducted a retrospective cohort study of individuals <21 years seeking care at 24 health systems across the U.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!