A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Endocrine pancreas-specific gene deletion causes a severe diabetes phenotype. | LitMetric

Reduced glutathione (GSH) is an abundant antioxidant that regulates intracellular redox homeostasis by scavenging reactive oxygen species (ROS). Glutamate-cysteine ligase catalytic (GCLC) subunit is the rate-limiting step in GSH biosynthesis. Using the driver mouse line, we deleted expression of the gene in all pancreatic endocrine progenitor cells. Intriguingly, knockout (KO) mice, following weaning, exhibited an age-related, progressive diabetes phenotype, manifested as strikingly increased blood glucose and decreased plasma insulin levels. This severe diabetes trait is preceded by pathologic changes in islet of weanling mice. KO weanlings showed progressive abnormalities in pancreatic morphology including: islet-specific cellular vacuolization, decreased islet-cell mass, and alterations in islet hormone expression. Islets from newly-weaned mice displayed impaired glucose-stimulated insulin secretion, decreased insulin hormone gene expression, oxidative stress, and increased markers of cellular senescence. Our results suggest that GSH biosynthesis is essential for normal development of the mouse pancreatic islet, and that protection from oxidative stress-induced cellular senescence might prevent abnormal islet-cell damage during embryogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312708PMC
http://dx.doi.org/10.1101/2023.06.13.544855DOI Listing

Publication Analysis

Top Keywords

severe diabetes
8
diabetes phenotype
8
gsh biosynthesis
8
cellular senescence
8
endocrine pancreas-specific
4
pancreas-specific gene
4
gene deletion
4
deletion severe
4
phenotype reduced
4
reduced glutathione
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!