Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, utilizing cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localized 12 DRC subunits in the N-DRC structure of . We also found that the CCDC96/113 complex is in close contact with the N-DRC. In addition, we revealed that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312493PMC
http://dx.doi.org/10.1101/2023.05.31.543107DOI Listing

Publication Analysis

Top Keywords

nexin-dynein regulatory
8
regulatory complex
8
regulatory mechanism
8
regulatory
5
n-drc
5
integrated modeling
4
modeling nexin-dynein
4
complex reveals
4
reveals regulatory
4
mechanism cilia
4

Similar Publications

The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility.

View Article and Find Full Text PDF
Article Synopsis
  • Controlling ciliary beating is crucial for movement and signaling in eukaryotic cells, relying on the organization of axonemal proteins on microtubules.
  • Tubulin post-translational modifications (PTMs) like glycylation and polyglutamylation play key roles in this process, creating specific nanopatterns that help regulate ciliary function.
  • The study highlights the existence of a ciliary tubulin "nanocode," suggesting that researching these modifications at a high resolution could enhance our understanding of their roles in other cellular structures.
View Article and Find Full Text PDF

Obesity is a risk factor for increased morbidity and mortality in viral respiratory infection. Mucociliary clearance (MCC) in the airway is the primary host defense against viral infections. However, the impact of obesity on MCC is unclear, prompting this study.

View Article and Find Full Text PDF

Homozygous variant in DRC3 (LRRC48) gene causes asthenozoospermia and male infertility.

J Hum Genet

August 2024

Department of Andrology/Sichuan Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China.

Human infertility affects 10-15% of couples. Asthenozoospermia accounts for 18% of men with infertility and is a common male infertility phenotype. The nexin-dynein regulatory complex (N-DRC) is a large protein complex in the sperm flagellum that connects adjacent doublets of microtubules.

View Article and Find Full Text PDF

Study Question: Is the mutation causative for male infertility?

Summary Answer: Our collected data underline the complex and devastating effect of the single-gene mutation on the testicular molecular network, leading to male reproductive failure.

What Is Known Already: Recent data have revealed mutations in genes related to axonemal dynein arms as causative for morphology and motility abnormalities in spermatozoa of infertile males, including dysplasia of fibrous sheath (DFS) and multiple morphological abnormalities in the sperm flagella (MMAF). The nexin-dynein regulatory complex (N-DRC) coordinates the dynein arm activity and is built from the DRC1-DRC7 proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!