Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we define a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIdney/BRAin (KIBRA) protein (CT-KIBRA). We show that CT-KIBRA restores plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we find that CT-KIBRA binds to and stabilizes protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. In humans we find that reduced KIBRA in brain and increased KIBRA in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. Thus, our results distinguish KIBRA both as a novel biomarker of synapse dysfunction in AD and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312627 | PMC |
http://dx.doi.org/10.1101/2023.06.12.543777 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Psychology, Vanderbilt University, Nashville, TN 37240.
Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex.
View Article and Find Full Text PDFFront Aging
January 2025
Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
Memory formation is associated with constant modifications of neuronal networks and synaptic plasticity gene expression in response to different environmental stimuli and experiences. Dysregulation of synaptic plasticity gene expression affects memory during aging and neurodegenerative diseases. Covalent modifications such as methylation on DNA and acetylation on histones regulate the transcription of synaptic plasticity genes.
View Article and Find Full Text PDFFront Rehabil Sci
January 2025
Department of Life Sciences, Health, and Health Professions, Link Campus University, Rome, Italy.
Purpose: The purpose of this case was to investigate objectively and quantitatively the effects of the application of repeated focal muscle vibration (fMV) associated with neurocognitive exercise on a 46-year-old patient with spastic paraparesis secondary to the surgical removal of a C5-C6 ependymoma.
Methods: We have evaluated gait parameters, spasticity, and pain with clinical scales. We have applied focal muscle vibration on quadriceps femoris, hamstrings, gastrocnemius, and iliopsoas muscles bilaterally.
Front Psychiatry
January 2025
Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany.
Background: The basolateral complex of the amygdala is a crucial neurobiological site for Pavlovian conditioning. Investigations into volumetric alterations of the basolateral amygdala in individuals with major depressive disorder (MDD) have yielded conflicting results. These may be reconciled in an inverted U-shape allostatic growth trajectory.
View Article and Find Full Text PDFBrain Behav Immun Health
February 2025
Pediatric and Urology and Regenerative Medicine Research Center, Gene, Cell and Tissue Research Institute, Children Medical Hospital, Tehran University of Medical Sciences, Tehran, Iran.
Neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS), are characterized by progressive neuronal loss and cognitive impairment (CI). The: Cysteine-X-cysteine chemokine ligand 12(CXCL12)/CXC chemokine receptor type 4 (CXCR4)/CXC chemokine receptor type 7 (CXCR7) axis has emerged as a critical molecular pathway in the development of CI in these disorders. This review explores the role of this axis in the pathogenesis of CI across these neurodegenerative diseases, synthesizing current evidence and its implications for targeted therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!