Overexpression of the multidrug efflux pump MtrCDE, a critical factor of multidrug-resistance in , the causative agent of gonorrheae, is repressed by the transcriptional regulator, MtrR (multiple transferable resistance repressor). Here, we report the results from a series of experiments to identify innate, human inducers of MtrR and to understand the biochemical and structural mechanisms of the gene regulatory function of MtrR. Isothermal titration calorimetry experiments reveal that MtrR binds the hormonal steroids progesterone, β-estradiol, and testosterone, all of which are present at significant concentrations at urogenital infection sites as well as ethinyl estrogen, a component of some birth control pills. Binding of these steroids results in decreased affinity of MtrR for cognate DNA, as demonstrated by fluorescence polarization-based assays. The crystal structures of MtrR bound to each steroid provided insight into the flexibility of the binding pocket, elucidated specific residue-ligand interactions, and revealed the conformational consequences of the induction mechanism of MtrR. Three residues, D171, W136 and R176 are key to the specific binding of these gonadal steroids. These studies provide a molecular understanding of the transcriptional regulation by MtrR that promotes survival in its human host.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312642 | PMC |
http://dx.doi.org/10.1101/2023.06.13.544409 | DOI Listing |
Genomics
January 2025
Key Laboratory of Animal Genetics and Breeding on the Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China. Electronic address:
N6-methyladenosine (m6A) modification of RNA is a critical post-transcriptional modification, that dynamically contributes to testicular development and spermatogenesis. Nevertheless, the investigation into the role of m6A in testicular development of sheep remains insufficient. Herein, we conducted a comprehensive analysis of the m6A transcriptome landscape in the testes of F1 hybrid Southdown × Hu sheep across M0 (0 months old, newborn), M3 (3 months old, sexually immature), M6 (6 months old, sexually mature), and Y1 (1 years old, adult).
View Article and Find Full Text PDFbioRxiv
January 2025
Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, New York, USA.
Doxycycline post-exposure prophylaxis (doxy-PEP) is a preventative strategy demonstrated to reduce bacterial sexually transmitted infections in high-risk populations. However, the impact of doxy-PEP on antibiotic resistance acquisition in key members of our microbiomes, is as of yet unclear. For example, commensal are known reservoirs of resistance for gonococci through horizontal gene transfer (HGT), and are more likely to experience bystander selection due to doxy-PEP as they are universally carried.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, Rochester, NY 14623, USA.
Commensal Neisseria are members of a healthy human oropharyngeal microbiome; however, they also serve as a reservoir of antimicrobial resistance for their pathogenic relatives. Despite their known importance as sources of novel genetic variation for pathogens, we still do not understand the full suite of resistance mutations commensal species can harbor. Here, we use in vitro selection to assess the mutations that emerge in response to ciprofloxacin selection in commensal Neisseria by passaging four replicates of four different species in the presence of a selective antibiotic gradient for 20 days; then categorized derived mutations with whole genome sequencing.
View Article and Find Full Text PDFBiochem Genet
January 2025
Posgraduate Program in Dentistry, Institute of Health Sciences, Fluminense Federal University, Nova Friburgo, RJ, Brazil.
To analyze whether the single-nucleotide polymorphisms (SNPs) in Matrix metalloproteinases 2, 3, and 9 (MMP2, MMP3, and MMP9), Tissue Inhibitor of Metalloproteinases 1 and 2 (TIMP1 and TIMP2), methionine synthase (MTR) and methionine synthase reductase (MTRR) influence delayed deciduous tooth eruption (DDTE). This cross-sectional study included 1060 biologic unrelated children (aged between 6 and 36 months) of both sexes, selected from 25 public schools in Nova Friburgo, Rio de Janeiro, Brazil. Oral examination was conducted and DDTE was defined by the absence of gingival eruption according to a chronology based on the Brazilian population.
View Article and Find Full Text PDFTransl Stroke Res
January 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No.119 Nan Si Huan Xi Road, Fengtai District, Beijing, China.
Methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) polymorphisms are known risk factors for vascular diseases due to the impact on folate metabolism dysfunction and homocysteine (Hcy) accumulation. This study aimed to investigate the association between folate metabolism risk and hemorrhagic risk in moyamoya disease (MMD). In this prospective study, we enrolled 350 MMD patients with complete genotype data for MTHFR and MTRR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!