The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β (Aβ) peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2) provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy (FLIM) to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1/PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1/PS1 interaction in intact neurons by FLIM. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1/PS1 interaction and its relevance in normal physiology and AD models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10312500PMC
http://dx.doi.org/10.1101/2023.05.30.542955DOI Listing

Publication Analysis

Top Keywords

interaction sites
12
ps1 glt-1
12
glt-1/ps1 interaction
12
interaction
10
glutamate transporter
8
residues position
8
glt-1
7
ps1
6
identification ps1/gamma-secretase
4
ps1/gamma-secretase glutamate
4

Similar Publications

Although the antiallergic properties of compounds such as CAPE, Melatonin, Curcumin, and Vitamin C have been poorly discussed by experimental studies, the antiallergic properties of these famous molecules have never been discussed with calculations. The histamine-1 receptor (H1R) belongs to the family of rhodopsin-like G-protein-coupled receptors expressed in cells that mediate allergies and other pathophysiological diseases. In this study, pharmacological activities of FDA-approved second generation H1 antihistamines (Levocetirizine, desloratadine and fexofenadine) and molecules such as CAPE, Melatonin, Curcumin, Vitamin C, ADMET (Absorption, Distribution, Metabolism, Excretion, Toxicity) profiles, density functional theory (DFT), molecular docking, biological targets and activities were compared by calculating.

View Article and Find Full Text PDF

Prostate cancer is a widespread health issue that affects men worldwide. It is one of the most common forms of cancer, and its development is influenced by a combination of hereditary, epigenetic, environmental, age, and lifestyle factors. Given that it is the second most common cause of cancer-related deaths in men, it is crucial to comprehend its complex facets.

View Article and Find Full Text PDF

The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.

View Article and Find Full Text PDF

Formation of molecularly imprinted polymers: Strategies applied for the removal of protein template (review).

Adv Colloid Interface Sci

December 2024

Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University (VU), Naugarduko Str. 24, LT-03225 Vilnius, Lithuania; Department of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania. Electronic address:

The key step in the entire molecularly imprinted polymer (MIP) preparation process is the formation of the complementary cavities in the polymer matrix through the template removal process. The template is removed using chemical treatments, leaving behind selective binding sites for target molecules within the polymer matrix. Other MIP preparation steps include mixing monomers and template molecules in the appropriate solvent(s), monomer-template complex equilibration, and polymerisation of the monomers around the template.

View Article and Find Full Text PDF

Enhancing the decomposition rate of ammonium perchlorate (AP), the most common oxidizer in solid propellants, is important for improving propellant performance. Metal organic frameworks (MOFs) have been developed as key materials for catalyzing AP decomposition, as they can achieve good dispersion of active sites through in-situ decomposition. Despite having considerable potential, the structural transformation process and catalytic performance of MOFs in AP decomposition are still unclear, which seriously hinders their application in the field of AP decomposition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!