Sulforaphane (SFN) is an isothiocyanate with multiple biomedical applications. Sulforaphane can be extracted from the plants of the genus . However, broccoli sprouts are the chief source of sulforaphane and are 20 to 50 times richer than mature broccoli as they contain 1,153 mg/100 g. SFN is a secondary metabolite that is produced as a result of the hydrolysis of glucoraphanin (a glucosinolate) by the enzyme myrosinase. This review paper aims to summarize and understand the mechanisms behind the anticancer potential of sulforaphane. The data was collected by searching PubMed/MedLine, Scopus, Web of Science, and Google Scholar. This paper concludes that sulforaphane provides cancer protection through the alteration of various epigenetic and non-epigenetic pathways. It is a potent anticancer phytochemical that is safe to consume with minimal side effects. However, there is still a need for further research regarding SFN and the development of a standard dose.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10313060PMC
http://dx.doi.org/10.3389/fonc.2023.1168321DOI Listing

Publication Analysis

Top Keywords

sulforaphane
6
anticancer properties
4
properties sulforaphane
4
sulforaphane current
4
current insights
4
insights molecular
4
molecular level
4
level sulforaphane
4
sulforaphane sfn
4
sfn isothiocyanate
4

Similar Publications

Sulforaphane (SF) is a sulfur (S)-containing isothiocyanate found in cruciferous vegetables and is known for its potent anticancer properties. Broccoli sprouts, in particular, are considered safe and healthy dietary choices due to their high SF content and other beneficial biological activities, such as enhanced metabolite ingestion. The application of selenium (Se) is an excellent approach to enhance the abundance of SF.

View Article and Find Full Text PDF

Potential Effects of Bioactive Compounds of Plant-Based Foods and Medicinal Plants in Chronic Kidney Disease and Dialysis: A Systematic Review.

Nutrients

December 2024

Department of Pharmaceutical & Health Sciences, School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Madrid, Spain.

Background: The bioactive components of plant foods and medicinal plants have attracted interest due to their potential impact on the progression of chronic kidney disease (CKD) and outcomes.

Objective: This study aimed to conduct a critical and quantitative systematic review of randomized clinical trials (RCTs) investigating the potential effects of selected phytochemicals from plant-based foods and medicinal plants in CKD and dialysis patients.

Methods: The review included studies that related plant-based bioactive compounds (curcumin, propolis, sulforaphane, betalain, catechins, rhein, emodin, aloe-emodin, flavonoids, and triptolide) and medicinal plants (green tea, rhubarb, , and Hook F) in CKD and dialysis patients.

View Article and Find Full Text PDF

The Anti-AGEing and RAGEing Potential of Isothiocyanates.

Molecules

December 2024

Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA.

Isothiocyanates (ITCs), found in edible plants such as cruciferous vegetables, are a group of reactive organo-sulfur phytochemicals produced by the hydrolysis of precursors known as glucosinolates. ITCs have been studied extensively both in vivo and in vitro to define their therapeutic potential for the treatment of chronic health conditions. Therapeutically, they have shown an intrinsic ability to inhibit oxidative and inflammatory phenotypes to support enhanced health.

View Article and Find Full Text PDF

Isothiocyanates (ITCs) are naturally occurring sulfur-containing compounds with diverse biological effects. This study investigated the effects of sulforaphane (SFN, an aliphatic ITC) and benzyl isothiocyanate (BITC, an aromatic ITC) on human acute myeloid leukemia SKM-1 cells, focusing on cell proliferation, cell death, and drug resistance. Both drug-sensitive SKM-1 cells and their drug-resistant SKM/VCR variant, which overexpresses the drug transporter P-glycoprotein, were used.

View Article and Find Full Text PDF

In the contemporary era of drug discovery, herbal treatments have demonstrated an unparalleled ability to produce anticancer drugs. An important part of the therapy of cancer is the use of plants and their by-products via analogues, which alter the tumor microenvironment and several signaling pathways. The objective of the current investigation was to conclude the rate at which the herbal medications quercetin (QT) and sulforaphane (SFN) repressed the growth of breast carcinoma cells in MDA-MB-231 by preventing the ERK/MAPK signaling systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!