Metabolite of chiral cycloxaprid in solvent and in the raw of Puer tea.

Food Chem X

Institute of Quality Standard and Testing Technology, Yunnan Academy of Agricultural Science, Supervision and Testing Center for Farm Product Quality, Ministry of Agriculture, Kunming 650223, PR China.

Published: June 2023

Cycloxaprid (CYC) with a chiral oxabridged cis- structure contains a pair of enantiomers. Enantioselective degradation, transformation and metabolite of CYC was performed in different solvents under light and raw Puer tea processing. The results showed that cycloxaprid enantiomers in acetonitrile and acetone was stable over 17 day, however the transformation of -(-)-cycloxaprid or -(-)-cycloxaprid was founded in methanol. The fastest degradation of cycloxaprid occurred in acetone under light, the metabolites were founded with retention times (T) at 34.83, 15.78 min, which mainly was via the reduce reaction of NO to NO, and rearrange reaction to tetrahydropyran. Degradation pathways were via the cleavage of the oxabridge seven member ring and the whole C ring. However, the degradation pathway under raw Puer tea processing was via the cleavage of whole C ring and the cleavage of oxabridge seven member ring and reducing NO, then it underwent an elimination of nitromethylene and rearrange reaction. This pathway of Puer tea processing was firstly founded.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314140PMC
http://dx.doi.org/10.1016/j.fochx.2023.100654DOI Listing

Publication Analysis

Top Keywords

puer tea
16
raw puer
12
tea processing
12
rearrange reaction
8
cleavage oxabridge
8
oxabridge member
8
member ring
8
metabolite chiral
4
cycloxaprid
4
chiral cycloxaprid
4

Similar Publications

The Chinese proverb "One mountain, one flavor" reflects that raw pu-erh tea (RPT) from different tea-producing mountains (TPMs) possesses distinct flavor profiles. However, limited research has been conducted on the chemical composition underlying distinct flavor profiles. In this study, sensory evaluation and main phytochemical compositions revealed diverse aromas of RPTs from 26 TPMs.

View Article and Find Full Text PDF

Manufacturing water-stable carboxymethyl cellulose (CMC) films as an alternative to commercial plastics is a promising solution to address plastic pollution. In this study, waste walnut shell (WS) was used as a natural lignocellulosic filler, glycerol as a plasticizer, and citric acid (CA) as a crosslinking agent for preparing high-performance CMC-based bioplastics through a one-pot casting method. When WS content was 12 wt%, the obtained CWGA-12 after optimization exhibited excellent mechanical properties (tensile strength ≈18.

View Article and Find Full Text PDF

is known for its popularity and robust nutritional value. While fresh fruit is a perishable commodity, it has a short post-harvest life and is susceptible to fungal decay after harvest. Melatonin has been reported to delay the aging and quality decline of various fruits and vegetables after harvest.

View Article and Find Full Text PDF

Post-fermented Pu-erh tea (PFPT) is a microbial fermented tea characterized by unique sensory attributes and multiple health benefits. is the dominant fungus involved in the fermentation process and plays a significant role in imparting the distinct characteristics of PFPT. To investigate the role of in the fermentation of Pu-erh tea, this study inoculated unsterilized sun-dried green tea with isolated from Pu-erh tea to enhance the fermentation process.

View Article and Find Full Text PDF

Liquid chromatography-mass spectrometry (LC-MS) was used to identify and analyze the main components of Da Hong Pao, Zunyi black tea, and Yunnan Pu'er tea extracts, explore the effects of brewing times on chemical composition, and analyze the differential components using chemometrics. Subsequently, network pharmacology and molecular docking techniques were employed to explore the potential active ingredients and mechanisms of action in combating hypertension (HTN). This study identified eight key chemical constituents of the three teas, with significant differences in their contents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!