Novel thermoresponsive emulsion gels and oleogels were fabricated by assembling nanofibrous from natural triterpenoid saponin (QS) and glycyrrhizic acid (GA). The viscoelasticity of QS-coated emulsion was observed to be remarkably improved by GA and thus obtain the advantages of excellent gelatinous, thermoresponsive and reversible manner due to the viscoelastic texture from GA nanofibrous as scaffolds in continuous phase. In the gelled emulsions, the phase transition of the GA fibrosis network structure upon heating and cooling was attributed to a thermal sensitivity, whereas interface-induced fibrosis assembly of amphiphilic QS endowed the formation of stable emulsion droplets. Then these emulsion gels were further used as an effective template to fabricate soft-solid oleogels with high oil content of 96%. These findings open up new opportunities for the use of all-natural and sustainable ingredients to develop smart soft materials for replace and saturated fats in food industry and other fields.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314201 | PMC |
http://dx.doi.org/10.1016/j.fochx.2023.100751 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Chemistry, Faculty of Food Technology, University of Agriculture, Balicka St. 122, PL-30-149 Cracow, Poland; Department of Product Packaging, Cracow University of Economics, Rakowicka 27, PL-31-510 Cracow, Poland. Electronic address:
Effect of different evening primrose oil content (1-20 %) on the rheological, mechanical, textural and microstructure of furcellaran/whey protein isolate emulsion gels were investigated at neutral, unmodified pH environment. The results indicate that, irrespective of the concentration, the oil acted as an inactive filler and was not chemically bound in the polymer network but only physically immobilized in it. The increasing oil amount in the material from 1 to 20 % resulted in a percentage decrease in hardness (52 %), gumminess (71 %) and stress relaxation ratio (17 %) which means that presence of the hydrophobic components weakens the structure of the material, but all samples exhibit elastic behaviour.
View Article and Find Full Text PDFFood Chem
December 2024
College of Life Science, South-Central Minzu University, Wuhan, Hubei 430074, China.
The effect of magnetic field on the properties of emulsified gels containing myofibrillar protein (MP-emulsified gels) with different salt concentration (0, 0.2, 0.4, 0.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
Large-amount encapsulation and subsequent expressing are common characteristics for many biomedical applications, such as cosmetic creams and medical ointments. Emulsion gels can accomplish that, but often undergo exclusive, complex, multiple synthesis steps, showing extremely laborious and non-universal. The method here is simple via precisely interfacial engineering in homogenizing a nanoparticle aqueous dispersion and a polymer oil solution, gaining interfacial 45° three-phase-contact-angle for the nanoparticle that can bridge across oil emulsions' interfaces and ultimately form interconnected macroscopic networks.
View Article and Find Full Text PDFJ Sci Food Agric
December 2024
College of Food Science and Engineering, Yangzhou University, Yangzhou, China.
Background: Pickering emulsions prepared with octenyl succinic anhydride-modified starch (OSAS) show significant promise as replacements for animal fat. However, the underlying mechanism of incorporating an OSAS-based Pickering emulsion into a myofibrillar protein (MP) gel and its impact on the gel properties remain poorly understood. In this study, the effects of OSAS at varying concentrations (0-10.
View Article and Find Full Text PDFGels
December 2024
College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
This study aimed to prepare ultrasonically modified peanut protein-guar gum composite emulsion gels for 3D printing. The composition of the composite emulsion gels was determined in single-factor and orthogonal experiments. The results revealed that the optimal composite emulsion gels consisted of 6% peanut protein, 50% oil and 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!