Wnt signaling plays an important role in many biological processes such as stem cell self-renewal, cell proliferation, migration, and differentiation. The β-catenin-dependent signaling pathway mainly regulates cell proliferation, differentiation, and migration. In the Wnt/β-catenin signaling pathway, the Wnt family ligands transduce signals through LRP5/6 and Frizzled receptors to the Wnt/β-catenin signaling cascades. Wnt-targeted therapy has garnered extensive attention. The most commonly used approach in targeted therapy is small-molecule regulators. However, it is difficult for small-molecule regulators to make great progress due to their inherent defects. Therapeutic peptide regulators targeting the Wnt signaling pathway have become an alternative therapy, promising to fill the gaps in the clinical application of small-molecule regulators. In this review, we describe recent advances in peptide regulators for Wnt/β-catenin signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311566 | PMC |
http://dx.doi.org/10.3389/fmed.2023.1164656 | DOI Listing |
Front Oncol
January 2025
Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil.
[This corrects the article DOI: 10.3389/fonc.2022.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Infectious Diseases, Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
Background: Hepatocellular carcinoma (HCC) is a significant global health concern, with chronic hepatitis B virus (HBV) infection being a major contributor. Understanding the mechanisms of HBV-associated HCC is crucial to improving the prognosis and developing effective treatments.
Methods: HBV-associated HCC datasets (GSE19665, GSE121248, GSE55092, GSE94660, and TCGA-LIHC) acquired from public databases were mined to identify key driver genes by differentially expressed gene analysis, weighted gene co-expression network analysis (WGCNA), followed by protein-protein interaction network analysis, Lasso-Cox regression analysis, and randomforestSRC algorithm.
J Hematol Oncol
January 2025
Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Gastric cancer remains a significant global health challenge, with Helicobacter pylori (H. pylori) recognized as a major etiological agent, affecting an estimated 50% of the world's population. There has been a rapidly expanding knowledge of the molecular and pathogenetic mechanisms of H.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Respiratory medicine, Taian 88 Hospital, Taian, 271000, People's Republic of China.
Recent empirical investigations reinforce the understanding of a profound interconnection between metabolic functions and Obstructive Sleep Apnea-hypopnea Syndrome (OSAHS). This study identifies distinctive miRNA signatures in OSAHS with Metabolic Syndrome (Mets) patients from healthy subjects, that could serve as diagnostic biomarkers or describe differential molecular mechanisms with potential therapeutic implications. In this study, OSAHS with MetS patients showed significantly higher Apnea Hyponea Index(AHI), but lower oxygen desaturation index(ODI 4/h) and minimum pulse oxygen saturation(SpO).
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Department of Spleen and Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine,100007; Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine,100029.
Ethnopharmacological Relevance: Traditional Chinese Medicine (TCM), as a longstanding therapeutic approach, offers unique advantages and potential in the treatment of liver cancer. Recent studies have highlighted its role in preventing liver cancer progression by modulating key signaling pathways. TCM's multi-component, multi-target, and multi-pathway mechanisms of action have garnered significant attention in the medical community for their ability to address complex diseases like liver cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!