Covalent Proteins as Targeted Radionuclide Therapies Enhance Antitumor Effects.

ACS Cent Sci

Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, California 94158, United States.

Published: June 2023

Molecularly targeted radionuclide therapies (TRTs) struggle with balancing efficacy and safety, as current strategies to increase tumor absorption often alter drug pharmacokinetics to prolong circulation and normal tissue irradiation. Here we report the first covalent protein TRT, which, through reacting with the target irreversibly, increases radioactive dose to the tumor without altering the drug's pharmacokinetic profile or normal tissue biodistribution. Through genetic code expansion, we engineered a latent bioreactive amino acid into a nanobody, which binds to its target protein and forms a covalent linkage via the proximity-enabled reactivity, cross-linking the target irreversibly , on cancer cells, and on tumors . The radiolabeled covalent nanobody markedly increases radioisotope levels in tumors and extends tumor residence time while maintaining rapid systemic clearance. Furthermore, the covalent nanobody conjugated to the α-emitter actinium-225 inhibits tumor growth more effectively than the noncovalent nanobody without causing tissue toxicity. Shifting the protein-based TRT from noncovalent to covalent mode, this chemical strategy improves tumor responses to TRTs and can be readily scaled to diverse protein radiopharmaceuticals engaging broad tumor targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311652PMC
http://dx.doi.org/10.1021/acscentsci.3c00288DOI Listing

Publication Analysis

Top Keywords

targeted radionuclide
8
radionuclide therapies
8
normal tissue
8
target irreversibly
8
covalent nanobody
8
covalent
6
tumor
6
covalent proteins
4
proteins targeted
4
therapies enhance
4

Similar Publications

Hepatocellular carcinoma (HCC) is a common cause of cancer‑related mortality and morbidity worldwide. While iodine‑125 (I) particle brachytherapy has been extensively used in the clinical treatment of various types of cancer, the precise mechanism underlying its effectiveness in treating HCC remains unclear. In the present study, MHCC‑97H cells were treated with I, after which, cell viability and proliferation were assessed using Cell Counting Kit‑8, 5‑ethynyl‑2'‑deoxyuridine and colony formation assays, cell invasion and migration were evaluated using wound healing and Transwell assays, and cell apoptosis was determined using flow cytometry.

View Article and Find Full Text PDF

Prostate cancer (PCa) has emerged to be the second leading cause of cancer-related deaths in men. Molecular imaging of PCa using targeted radiopharmaceuticals specifically to PCa cells promises accurate staging of primary disease, detection of localized and metastasized tumours, and helps predict the progression of the disease. Glutamate urea heterodimers have been popularly used as high-affinity small molecules in the binding pockets of popular and well-characterized PCa biomarker, prostate specific membrane antigen (PSMA).

View Article and Find Full Text PDF

We present the case of a 58-year-old man with metastatic medullary thyroid carcinoma refractory to conventional therapies, including peptide receptor radionuclide therapy. Despite multiple interventions, serum calcitonin and carcinoembryonic antigen levels continued to rise. Subsequent evaluation with 99mTc-FAPI-46 revealed remarkable uptake in metastatic lesions, suggesting a potential role for FAPI-labeled radioisotopes in the management of medullary thyroid carcinoma.

View Article and Find Full Text PDF

To establish the extent, distribution and frequency of in-vivo vessel wall [Ga]Ga-PentixaFor uptake and to determine its relationship with calcified atherosclerotic plaque burden (CAP) and cardiovascular risk factors (CVRF). 65 oncological patients undergoing [Ga]Ga-PentixaFor PET/CT were assessed. Radiotracer uptake (target-to-background ratio [TBR]) and CAP burden (including number of CAP sites, calcification circumference and thickness) in seven major vessel segments per patient were determined.

View Article and Find Full Text PDF

Monitoring of cancer ferroptosis with [F]hGTS13, a system xc- specific radiotracer.

Theranostics

January 2025

Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, 94305, USA.

Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor in adults, characterized by resistance to conventional therapies and poor survival. Ferroptosis, a form of regulated cell death driven by lipid peroxidation, has recently emerged as a promising therapeutic target for GBM treatment. However, there are currently no non-invasive imaging techniques to monitor the engagement of pro-ferroptotic compounds with their respective targets, or to monitor the efficacy of ferroptosis-based therapies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!