On Graphical Models and Convex Geometry.

Comput Stat Data Anal

Department of Statistics and Data Science, Cornell University, 1190 Comstock Hall, Ithaca, 14853, NY, USA.

Published: November 2023

A mixture-model of beta distributions framework is introduced to identify significant correlations among features when is large. The method relies on theorems in convex geometry, which are used to show how to control the error rate of edge detection in graphical models. The proposed 'betaMix' method does not require any assumptions about the network structure, nor does it assume that the network is sparse. The results hold for a wide class of data-generating distributions that include light-tailed and heavy-tailed spherically symmetric distributions. The results are robust for sufficiently large sample sizes and hold for non-elliptically-symmetric distributions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310290PMC
http://dx.doi.org/10.1016/j.csda.2023.107800DOI Listing

Publication Analysis

Top Keywords

graphical models
8
convex geometry
8
models convex
4
geometry mixture-model
4
mixture-model beta
4
distributions
4
beta distributions
4
distributions framework
4
framework introduced
4
introduced identify
4

Similar Publications

The range of sensor technologies for structural health monitoring (SHM) systems is expanding as the need for ongoing structural monitoring increases. In such a case, damage to the monitored structure elements is detected using an integrated network of sensors operating in real-time or periodically in frequent time stamps. This paper briefly introduces a new type of sensor, called a Customized Crack Propagation Sensor (CCPS), which is an alternative for crack gauges, but with enhanced functional features and customizability.

View Article and Find Full Text PDF

Improving Industrial Quality Control: A Transfer Learning Approach to Surface Defect Detection.

Sensors (Basel)

January 2025

Centre of Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro, Portugal.

To automate the quality control of painted surfaces of heating devices, an automatic defect detection and classification system was developed by combining deflectometry and bright light-based illumination on the image acquisition, deep learning models for the classification of non-defective (OK) and defective (NOK) surfaces that fused dual-modal information at the decision level, and an online network for information dispatching and visualization. Three decision-making algorithms were tested for implementation: a new model built and trained from scratch and transfer learning of pre-trained networks (ResNet-50 and Inception V3). The results revealed that the two illumination modes employed widened the type of defects that could be identified with this system, while maintaining its lower computational complexity by performing multi-modal fusion at the decision level.

View Article and Find Full Text PDF

Graphical models have long been studied in statistics as a tool for inferring conditional independence relationships among a large set of random variables. The most existing works in graphical modeling focus on the cases that the data are Gaussian or mixed and the variables are linearly dependent. In this paper, we propose a double regression method for learning graphical models under the high-dimensional nonlinear and non-Gaussian setting, and prove that the proposed method is consistent under mild conditions.

View Article and Find Full Text PDF

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety.

View Article and Find Full Text PDF

BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories.

J Chem Inf Model

January 2025

Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!