A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monitoring optoporated process on mammalian cells by real-time measurement of membrane resealing time. | LitMetric

Monitoring optoporated process on mammalian cells by real-time measurement of membrane resealing time.

J Biomed Opt

Xi'an Jiaotong University, Institute of Biomedical Photonics and Sensing, School of Life Science and Technology, Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an, China.

Published: June 2023

Significance: Resealing time based loading efficiency of optoporation is the key parameter for drug or gene delivery. This work describes a comparatively simple optical approach to directly measure the cell membrane resealing time of the gold nanoparticle mediated photoporation.

Aim: To establish a membrane potential detection optical system, which can provide a direct measurement of resealing time of the optoporated cells.

Approach: Voltage sensitive dye has been used to label the gold nanoparticle covered cell before laser activation and the resealing time was estimated from the voltage change due to the fluorescence light intensity change before and after laser activation. The approach has been validated by the simulated data based on diffusion model and Monte Carlo simulation and the experimental data obtained from a flow cytometry analysis.

Results: The measured resealing time after perforation varied from 28.6 to 163.8 s on Hela cells when the irradiation fluence was increased, with a correlation coefficient () of 0.9938. This result is in agreement with the resealing time (1-2 min) of photothermal porated Hela cells measured by electrical impedance method. The intracellular delivery efficiency of extracellular macromolecular under the same irradiation fluence depends mainly on diffusion velocity rather than pore size.

Conclusion: The method described here can be used to directly measure resealing time of optoporated cells for accurately estimating the loading efficiency on discovering the mechanism of optoporation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308995PMC
http://dx.doi.org/10.1117/1.JBO.28.6.065006DOI Listing

Publication Analysis

Top Keywords

resealing time
32
resealing
8
membrane resealing
8
time
8
loading efficiency
8
directly measure
8
gold nanoparticle
8
time optoporated
8
laser activation
8
hela cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!