The skeletal system is a dynamically balanced system, which undergoes continuous bone resorption and formation to maintain bone matrix homeostasis. As an important ADP-ribosylase and NAD-dependent deacylase, SIRT6 (SIR2-like protein 6) is widely expressed on various kinds of bone cells, such as chondrocytes, osteoblasts, osteoclasts. The aberration of SIRT6 impairs gene expression (e.g., NF-κB and Wnt target genes) and cellular functions (e.g., DNA repair, glucose and lipid metabolism, telomeric maintenance), which disturbs the dynamic balance and ultimately leads to several bone-related diseases. In this review, we summarize the critical roles of SIRT6 in the onset and progression of bone-related diseases including osteoporosis, osteoarthritis, rheumatoid arthritis, and intervertebral disc degeneration, as well as the relevant signaling pathways. In addition, we discuss the advances in the development of SIRT6 activators and elucidate their pharmacological profiles, which may provide novel treatment strategies for these skeletal diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308074 | PMC |
http://dx.doi.org/10.1016/j.gendis.2021.12.024 | DOI Listing |
Theranostics
January 2025
Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
Bone metastasis and skeletal-related complications are primary causes of mortality in advanced-stage prostate cancer (PCa). Epigenetic regulation, particularly histone modification, plays a key role in this process; however, the underlying mechanisms remain elusive. In mouse models, JARID1D was an important mediator of both visceral and bone metastases.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
The choroid plexuses (CP) are highly vascularized structures that project into the ventricles of the vertebrate brain. The polarized epithelia of the CP produce cerebrospinal fluid by transporting water and ions into the ventricles from the blood and normally secrete a large number of proteins. We assessed the feasibility of selective CP transduction with recombinant adeno-associated virus (rAAV) gene therapy vectors for treatment of lysosomal storage disease (LSD), a broad category of neurometabolic illness associated with significant burdens to affected patients and their families.
View Article and Find Full Text PDFBMC Geriatr
January 2025
Geroscience Research Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan.
Background: To investigate whether continuous intervention using soymilk containing high soy protein improves physical frailty, a randomized controlled trial was conducted among the Japanese pre-frail and frail elderly.
Methods: Japanese pre-frail and frail elderly participants (n = 73) were randomly assigned to the high-soy protein and control groups, who then ingested soymilk containing 14.5 g/200 ml and 3.
Adv Healthc Mater
January 2025
Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
Immune cells show enormous potential for targeted nanoparticle delivery due to their intrinsic tumor-homing skills. However, the immune cells can internalize the nanoparticles, leading to cellular functional impairments, degradation of the nanoparticles, and delayed release of drugs from the immune cells. To address these issues, this study introduces an approach for the synthesis of freshly derived neutrophils (NUs)-based nanocarriers system where the NUs are surfaced by dialdehyde alginate-coated self-assembled micelles loaded with mitoxantrone (MIT) and indocyanine green (ICG) (i.
View Article and Find Full Text PDFCurr Obes Rep
January 2025
Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
Purpose Of Review: To review evidence supporting human umbilical cord mesenchymal stem cells (UC-MSC) as an innovative model system advancing obesity precision medicine.
Recent Findings: Obesity prevalence is increasing rapidly and exposures during fetal development can impact individual susceptibility to obesity. UC-MSCs exhibit heterogeneous phenotypes associated with maternal exposures and predictive of child cardiometabolic outcomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!