Insights into Synergistic Effects of Counterion and Ligand on Diastereoselectivity Switch in Gold-Catalyzed Post-Ugi Ipso-Cyclization.

ACS Omega

Institute of Molecular Science and Applied Chemistry, School of Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China.

Published: June 2023

The concept of diastereoselectivity switch in gold catalysis is investigated, which primarily depends on the effects of ligand and counterion. The origins of gold-catalyzed post-Ugi ipso-cyclization for the diastereoselective synthesis of spirocyclic pyrrol-2-one-dienone have been explored with density functional theory calculations. The reported mechanism emphasized the importance of the cooperation of ligand and counterion in diastereoselectivity switch, leading to the stereocontrolling transition states. Furthermore, the nonbonding interactions primarily between the catalyst and the substrate play a significant role in the cooperation of ligand and counterion. This work would be useful to further understand the reaction mechanism of gold-catalyzed cyclization and the effects of ligand and counterion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308395PMC
http://dx.doi.org/10.1021/acsomega.3c01279DOI Listing

Publication Analysis

Top Keywords

ligand counterion
16
diastereoselectivity switch
12
gold-catalyzed post-ugi
8
post-ugi ipso-cyclization
8
effects ligand
8
cooperation ligand
8
counterion
5
ligand
5
insights synergistic
4
synergistic effects
4

Similar Publications

Crystal structures and photophysical properties of mono- and dinuclear Zn complexes flanked by tri-ethyl-ammonium.

Acta Crystallogr E Crystallogr Commun

October 2024

Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.

Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (CHN){Zn(CHNO)Cl] (), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (CHN)[Zn(CHNO)Cl] (), were synthesized and their structures were determined using ESI-MS spectrometry, H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol () and ,'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine () were deprotonated by tri-ethyl-amine, forming the counter-ion EtNH, which inter-acts an N-H⋯O hydrogen bond with the ligand. The Zn atoms have a distorted trigonal-pyramidal () and distorted tetra-hedral () geometries with a coord-ination number of four, coordinating with the ligands N and O atoms.

View Article and Find Full Text PDF

The crystal structure of the title compound, hexa-aqua-nickel(II) dichloride-1,4,7,10,13,16-hexa-oxa-cyclo-octa-deca-ne-water (1/2/2), [Ni(HO)]Cl·2CHO·2HO, is reported. The asymmetric unit contains half of the Ni(OH) moiety with a formula of CHClNiO at 105 K and triclinic (1) symmetry. The [Ni(OH)] cation has close to ideal octa-hedral geometry with O-Ni-O bond angles that are within 3° of idealized values.

View Article and Find Full Text PDF

Efficient computational screenings are integral to materials discovery in highly sought-after gas adsorption and storage applications, such as CO capture. Preprocessing techniques have been developed to render experimental crystal structures suitable for molecular simulations by mimicking experimental activation protocols, particularly residual solvent removal. Current accounts examining these preprocessed materials databases indicate the presence of assorted structural errors introduced by solvent removal and preprocessing, including improper elimination of charge-balancing ions and ligands.

View Article and Find Full Text PDF

A novel layered structure of the heterometallic oxalate compound [NH(CH)][NaFe(CO)]·0.33NH(CH)·0.33HO: synthesis, crystal structure and thermal decomposition.

Acta Crystallogr C Struct Chem

December 2024

Laboratoire de Cristallographie-Themodynamique, Faculté de Chimie, USTHB, BP 32 El-Alia Bab Ezzouar, Algiers, 16111, Algeria.

Article Synopsis
  • The study reports the synthesis and structural analysis of a new heteronuclear oxalate compound created using iron and sodium salts, oxalic acid, and DMF in an aqueous solution.
  • This compound, classified as dimethylammonium tris(oxalato)ferrate(III), features a unique layered structure where iron is coordinated by oxalate ligands and sodium adopts various coordination numbers.
  • The stability of the structure is supported by hydrogen bonds and ionic interactions, and upon thermal decomposition, the compound ultimately breaks down to form NaFeO.
View Article and Find Full Text PDF

Understanding ketone hydrogenation catalysis with anionic iridium(iii) complexes: the crucial role of counterion and solvation.

Chem Sci

December 2024

CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT 205 Route de Narbonne, BP 44099, F-31077 Toulouse Cedex 4 France +33-561553003 +33-561333174.

Catalytic asymmetric hydrogenation of ketones is an important approach to prepare valuable chiral alcohols. Understanding how transition metals promote these reactions is key to the rational design of more active, selective and sustainable catalysts. A highly unusual mechanism for asymmetric hydrogenation of acetophenone catalysed by an anionic Ir hydride system, including a strong counterion dependence on catalyst activity, is explored and rationalised here.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!