Exploring the Core Parameters of CNC-Based Chiral Nematic Structures for Enhancing the Dissymmetry Factor of Right-Handed Circularly Polarized Luminescence.

ACS Omega

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, 100872 Beijing, People's Republic of China.

Published: June 2023

The chiral nematic nanostructure formed from cellulose nanocrystal (CNC) self-assembly has shown great potential as a matrix for generating circularly polarized luminescent (CPL) light with a high dissymmetry factor. Exploring the relationship between the device composition and structure and the light dissymmetry factor is crucial to a common strategy for a strongly dissymmetric CPL light. In this study, we have compared the single-layered and double-layered CNC-based CPL devices with different luminophores, such as rhodamine 6G (R6G), methylene blue (MB), crystal violet (CV), and silicon quantum dots (Si QDs). We demonstrated that forming a double-layered structure of CNCs nanocomposites is a simple but effective pathway for enhancing the CPL dissymmetry factor for CNC-based CPL materials containing different luminophores. The || values of double-layered CNC devices (dye@CNC5||CNC5) versus that of single-layered devices (dye@CNC5) are 3.25 times for Si QDs, 3.7 times for R6G, 3.1 times for MB, and 2.78 times for CV series. The different enhancement degrees of these CNC layers with a similar thickness may be due to the different pitch numbers in the chiral nematic liquid crystal layers whose photonic band gap (PBG) has been modified to match the emission wavelengths of dyes. Furthermore, the assembled CNC nanostructure has great tolerance to the addition of nanoparticles. Gold nanorods coated with the SiO layer (Au NR@SiO) were added for enhancing the dissymmetry factor of MB in CNC composites (named MAS devices). When the strong longitudinal plasmonic band of the Au NR@SiO matched the emission wavelength of MB and the PBG of assembled CNC structures simultaneously, the increase in the factor and quantum yield of MAS composites was obtained. The good compatibility of the assembled CNC nanostructures makes it a universal platform for developing strong CPL light sources with a high dissymmetry factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10308516PMC
http://dx.doi.org/10.1021/acsomega.3c02969DOI Listing

Publication Analysis

Top Keywords

dissymmetry factor
24
chiral nematic
12
cpl light
12
assembled cnc
12
enhancing dissymmetry
8
circularly polarized
8
high dissymmetry
8
cnc-based cpl
8
factor
7
cnc
7

Similar Publications

Circularly polarized luminescence (CPL) is an emerging field with significant applications in molecular electronics, optical materials, and chiroptical sensing. Achieving efficient CPL emission in organic systems remains a major challenge, particularly in the development of materials with high fluorescence quantum yields (Φ) and large luminescence dissymmetry factors (g). Herein, we report the efficient synthesis of shape-persistent tetraphenylethylene macrocycles and investigate its potential as a CPL material.

View Article and Find Full Text PDF

Endowing single-crystal polymers with circularly polarized luminescence.

Nat Commun

January 2025

Key Laboratory for Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.

The preparation of single-crystal polymers with circularly polarized luminesce (CPL) remains a challenging task in chemistry and materials science. Herein, we present the single-crystal-to-single-crystal topochemical photopolymerization of a chiral organic salt to achieve this goal. The in-situ reaction of 1,4-bis((E)-2-(pyridin-4-yl)vinyl)benzene (1) with chiral (+)- or (-)-camphorsulfonic acid (CSA) gives the monomer crystal 1[( + )/( - )-CSA] showing yellow CPL with a high luminescent dissymmetry factor |g| of 0.

View Article and Find Full Text PDF

High-Performance Circular Polarization Multiple-Resonance TADF Molecules with Enhanced Long-Range Charge Transfer Based on Chiral Paracyclophane.

J Phys Chem Lett

January 2025

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.

Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.

View Article and Find Full Text PDF

Generating Strong Circularly Polarized Luminescence from Self-assembled Films of Chiral Selenium Nanoparticles and Upconversion Nanoparticles.

Angew Chem Int Ed Engl

December 2024

Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, lihu road 1800#, 214122, Wuxi, CHINA.

Circularly polarized luminescence (CPL) has garnered significant research attention. Achieving a high luminescence dissymmetry factor (glum) is a key challenge in this field. Herein, we reported, for the first time, the fabrication of a chiral assembled film consisting of chiral D-/L-Selenium nanoparticles (D-/L-Se NPs) and DSPE-PEG-NH2 modified upconversion nanoparticles (DPNUCNPs) with remarkable CPL properties that were generated by the interfacial self-assembly technique.

View Article and Find Full Text PDF

Aggregation-Induced Emission Carbon Dot-Based Multicolor Circularly Polarized Afterglow with a High Luminescence Dissymmetry Factor.

J Phys Chem Lett

January 2025

Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.

Carbon dots (CDs) with circularly polarized afterglow (CPA) materials have drawn increasing attention as cutting-edge research in the field of chiral luminescence owing to their promising applications in various fields. However, due to the weak optical activity of chiral CDs and the limited afterglow color of phosphorescent CDs, it is still a formidable challenge to construct multicolor CD-based CPA materials with a high luminescence dissymmetry factor (). Herein, positively charged aggregation-induced emission (AIE) CDs were prepared using dithiosalicylic acid and ionic liquid as precursors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!