To evaluate the biomechanical capacity of two forms of fixation for Pipkin type-II fractures, describing the vertical fracture deviation, the maximum and minimum principal stresses, and the Von Mises equivalent stress in the syntheses used.  Two internal fasteners were developed to treat Pipkin type-II fractures through finite elements: a 3.5-mm cortical screw and a Herbert screw. Under the same conditions, the vertical fracture deviation, the maximum and minimum principal stresses, and the Von Mises equivalent stress in the syntheses used were evaluated.  The vertical displacements evaluated were of 1.5 mm and 0.5 mm. The maximum principal stress values obtained in the upper region of the femoral neck were of 9.7 KPa and 1.3 Kpa, and the minimum principal stress values obtained in the lower region of the femoral neck were of -8.7 KPa and -9.3 KPa. Finally, the peak values for Von Mises stress were of 7.2 GPa and 2.0 GPa for the fixation models with the use of the 3.5-mm cortical screw and the Herbert screw respectively.  The fixation system with the Herbert screw generated the best results in terms of reduction of vertical displacement, distribution of the maximum principal stress, and the peak Von Mises equivalent stress, demonstrating mechanical superiority compared to that of the 3.5-mm cortical screw in the treatment of Pipkin type-II fractures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10310412PMC
http://dx.doi.org/10.1055/s-0042-1756326DOI Listing

Publication Analysis

Top Keywords

pipkin type-ii
16
von mises
16
type-ii fractures
12
minimum principal
12
mises equivalent
12
equivalent stress
12
35-mm cortical
12
cortical screw
12
herbert screw
12
principal stress
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!