Background: In our current work, an F-FDG PET/CT radiomics-based model was developed to assess the progression-free survival (PFS) and overall survival (OS) of patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) who received chimeric antigen receptor (CAR)-T cell therapy.

Methods: A total of 61 DLBCL cases receiving F-FDG PET/CT before CAR-T cell infusion were included in the current analysis, and these patients were randomly assigned to a training cohort (n = 42) and a validation cohort (n = 19). Radiomic features from PET and CT images were obtained using LIFEx software, and radiomics signatures (R-signatures) were then constructed by choosing the optimal parameters according to their PFS and OS. Subsequently, the radiomics model and clinical model were constructed and validated.

Results: The radiomics model that integrated R-signatures and clinical risk factors showed superior prognostic performance compared with the clinical models in terms of both PFS (C-index: 0.710 vs. 0.716; AUC: 0.776 vs. 0.712) and OS (C-index: 0.780 vs. 0.762; AUC: 0.828 vs. 0.728). For validation, the C-index of the two approaches was 0.640 vs. 0.619 and 0.676 vs. 0.699 for predicting PFS and OS, respectively. Moreover, the AUC was 0.886 vs. 0.635 and 0.778 vs. 0.705, respectively. The calibration curves indicated good agreement, and the decision curve analysis suggested that the net benefit of radiomics models was higher than that of clinical models.

Conclusions: PET/CT-derived R-signature could be a potential prognostic biomarker for R/R DLBCL patients undergoing CAR-T cell therapy. Moreover, the risk stratification could be further enhanced when the PET/CT-derived R-signature was combined with clinical factors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-023-05038-wDOI Listing

Publication Analysis

Top Keywords

car-t cell
12
survival patients
8
diffuse large
8
large b-cell
8
b-cell lymphoma
8
chimeric antigen
8
antigen receptor
8
f-fdg pet/ct
8
radiomics model
8
pet/ct-derived r-signature
8

Similar Publications

Patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) have poor outcomes. Gemcitabine + oxaliplatin (GemOx) with rituximab, a standard salvage therapy, yields complete response (CR) rates of approximately 30% and median overall survival (OS) of 10-13 months. Patients with refractory disease fare worse, with a CR rate of 7% for subsequent therapies and median OS of 6 months.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Cancer immunotherapy in progress-an overview of the past 130 years.

Int Immunol

January 2025

Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4, Sakamoto, Nagasaki, 852-8523, Japan.

Since the first approval of an immune-checkpoint inhibitor, we have witnessed the clinical success of cancer immunotherapy. Adoptive T-cell therapy with chimeric antigen-receptor T (CAR-T) cells has shown remarkable efficacy in hematological malignancies. Concurrently with these successes, the cancer immunoediting concept that refined the cancer immunosurveillance concept underpinned the scientific mechanism and reason for past failures, as well as recent breakthroughs in cancer immunotherapy.

View Article and Find Full Text PDF

Immunotherapy is a cutting-edge approach that leverages sophisticated technology to target tumor-specific antibodies and modulate the immune system to eradicate cancer and enhance patients' quality of life. Bioinformatics and genetic science advancements have made it possible to diagnose and treat cancer patients using immunotherapy technology. However, current immunotherapies against cancer have limited clinical benefits due to cancer-associated antigens, which often fail to interact with immune cells and exhibit insufficient therapeutic targeting with unintended side effects.

View Article and Find Full Text PDF

Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!