Plasmids contribute to microbial diversity and adaptation, providing microorganisms with the ability to thrive in a wide range of conditions in extreme environments. However, while the number of marine microbiome studies is constantly increasing, very little is known about marine plasmids, and they are very poorly represented in public databases. To extend the repertoire of environmental marine plasmids, we established a pipeline for the assembly of plasmids in the marine environment by analyzing available microbiome metagenomic sequencing data. By applying the pipeline to data from the Red Sea, we identified 362 plasmid candidates. We showed that the distribution of plasmids corresponds to environmental conditions, particularly, depth, temperature, and physical location. At least 7 of the 362 candidates are most probably real plasmids, based on a functional analysis of their open reading frames (ORFs). Only one of the seven has been described previously. Three plasmids were identified in other public marine metagenomic data from different locations all over the world; these plasmids contained different cassettes of functional genes at each location. Analysis of antibiotic and metal resistance genes revealed that the same positions that were enriched with genes encoding resistance to antibiotics were also enriched with resistance to metals, suggesting that plasmids contribute site-dependent phenotypic modules to their ecological niches. Finally, half of the ORFs (50.8%) could not be assigned to a function, emphasizing the untapped potential of the unique marine plasmids to provide proteins with multiple novel functions. Marine plasmids are understudied and hence underrepresented in databases. Plasmid functional annotation and characterization is complicated but, if successful, may provide a pool of novel genes and unknown functions. Newly discovered plasmids and their functional repertoire are potentially valuable tools for predicting the dissemination of antimicrobial resistance, providing vectors for molecular cloning and an understanding of plasmid-bacterial interactions in various environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10434023 | PMC |
http://dx.doi.org/10.1128/spectrum.00400-23 | DOI Listing |
Int J Mol Sci
December 2024
State Key Laboratory of Mariculture Breeding, Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Jimei University, Xiamen 361021, China.
Sphingosine kinases (SPHKs) are essential enzymes that catalyze the phosphorylation of sphingosine to produce sphingosine-1-phosphate (S1P), which plays pivotal roles in inflammation and immune regulation. In this study, genome-wide association analysis (GWAS) identified the gene as closely associated with the resistance of yellow drum () to . Structural prediction showed that YDSPHK1 contains a typical diacylglycerol kinase catalytic (DAGKc) domain (154-291 aa).
View Article and Find Full Text PDFWater Res
December 2024
CSIRO Environment, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia. Electronic address:
Microbial source tracking (MST) is a critical tool for identifying sources of human and animal fecal pollution in aquatic environments. To enhance human fecal pollution tracking, this study evaluated the performance characteristics of pBI143, a cryptic plasmid recently identified for potential MST applications. Nucleic acid samples from ten animal species were screened for pBI143, revealing its presence in a small number of pigs, cows, dogs, cats, and flying fox fecal samples.
View Article and Find Full Text PDFMicrobiol Resour Announc
December 2024
Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan.
The Gram-negative bacterium is a serious shrimp pathogen. Here, we present the genome sequence of TUMSAT-2019, which was isolated from a kuruma shrimp () that originated from a shrimp farm in Okinawa Prefecture. The assembly totaled 5.
View Article and Find Full Text PDFJ Biol Eng
December 2024
Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
Background: Manipulating the gene expression is the key strategy to optimize the metabolic flux. Not only transcription, translation, and post-translation level control, but also the dynamic plasmid copy number (PCN) control has been studied. The dynamic PCN control systems that have been developed to date are based on the understanding of origin replication mechanisms, which limits their application to specific origins of replication and requires the use of antibiotics for plasmid maintenance.
View Article and Find Full Text PDFMicrobiol Resour Announc
January 2025
Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.
Vibrio diabolicus 3098 is a marine halophile, a member of the . The draft whole-genome sequence is 5.17 Mb and has 4,829 predicted coding sequences divided into two chromosomes and a plasmid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!