Across the animal kingdom, newly independent juveniles form social associations that influence later fitness, mate choice and gene flow, but little is known about the ontogeny of social environments, particularly in wild populations. Here we test whether associations among young animals form randomly or are influenced by environmental or genetic conditions established by parents. Parents' decisions determine natal birth sites, which could affect who independent young initially encounter; secondly, mate choice determines genetic condition (e.g. inbreeding) of young and the parental care they receive, which can affect sociability. However, genetic and environmental factors are confounded unless related offspring experience different natal environments. Therefore, we used a long-term genetic pedigree, breeding records and social network data from three cohorts of a songbird with high extra-pair paternity (hihi, Notiomystis cincta) to disentangle (1) how nest location and relatedness contribute to association structure once juveniles disperse away from birth sites, and (2) if juvenile and/or parental inbreeding predicts individual sociability. We detected positive spatial autocorrelation: hihi that fledged closer by were more likely to associate even after dispersing, irrespective of genetic relatedness. Juvenile inbreeding did not predict sociability, but those raised by more inbred fathers formed more, stronger, associations, which did not depend on whether that male was the genetic parent or not. These results suggest that the natal environment created by parents, rather than focal genetic condition, establishes the foundation for social associations. Overall, we highlight how social inheritance may play an important role in population dynamics and evolutionary potential in wild animals.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.17066DOI Listing

Publication Analysis

Top Keywords

genetic
8
social associations
8
mate choice
8
birth sites
8
genetic condition
8
social
6
parental breeding
4
breeding decisions
4
decisions genetic
4
genetic quality
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

GSK R&D, Stevenage, Hertfordshire, United Kingdom.

Background: Genetic variants in GRN, the gene encoding progranulin, are causal for or are associated with the risk of multiple neurodegenerative diseases. Modulating progranulin has been considered as a therapeutic strategy for neurodegenerative diseases including Frontotemporal Dementia (FTD) and Alzheimer's Disease (AD). Here, we integrated genetics with proteomic data to determine the causal human evidence for the therapeutic benefit of modulating progranulin in AD.

View Article and Find Full Text PDF

Background: Availability of amyloid modifying therapies will dramatically increase the need for disclosure of Alzheimer's disease (AD) related genetic and/or biomarker test results. The 21st Century Cares Act requires the immediate return of most medical test results, including AD biomarkers. A shortage of genetic counselors and dementia specialists already exists, thus driving the need for scalable methods to responsibly communicate test results.

View Article and Find Full Text PDF

Background: The presence of multiple comorbid pathologic features in late-onset dementia has been well documented across cohort studies that incorporate autopsy evaluation. It is likely that such mixed pathology potentially confounds the results of interventional trials that are designed to target a solitary pathophysiologic mechanism in Alzheimer's disease and related dementias (ADRD).

Method: The UK ADRC autopsy database was screened for participants who had previously engaged in therapeutic interventional trials for Alzheimer's disease, vascular cognitive impairment, dementia, and/or ADRD prevention trials from 2005 to the present.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Sage Bionetworks, Seattle, WA, USA.

Background: There is an urgent need for new therapeutic and diagnostic targets for Alzheimer's disease (AD). Dementia afflicts roughly 55 million individuals worldwide, and the prevalence is increasing with longer lifespans and the absence of preventive therapies. Given the demonstrated heterogeneity of Alzheimer's disease in biological and genetic components, it is critical to identify new therapeutic approaches.

View Article and Find Full Text PDF

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!