Photo-Lipids: Light-Sensitive Nano-Switches to Control Membrane Properties.

Chempluschem

Institute of Organic and Biomolecular Chemistry, Georg-August-Universität, Tammannstraße 2, 37077, Göttingen, Germany.

Published: November 2023

Biological membranes are described as a complex mixture of lipids and proteins organized according to thermodynamic principles. This chemical and spatial complexity can lead to specialized functional membrane domains enriched with specific lipids and proteins. The interaction between lipids and proteins restricts their lateral diffusion and range of motion, thus altering their function. One approach to investigating these membrane properties is to use chemically accessible probes. In particular, photo-lipids, which contain a light-sensitive azobenzene moiety that changes its configuration from trans- to cis- upon light irradiation, have recently gained popularity for modifying membrane properties. These azobenzene-derived lipids serve as nanotools for manipulating lipid membranes in vitro and in vivo. Here, we will discuss the use of these compounds in artificial and biological membranes as well as their application in drug delivery. We will focus mainly on changes in the membrane's physical properties as well as lipid membrane domains in phase-separated liquid-ordered/liquid-disordered bilayers driven by light, and how these changes in membrane physical properties alter transmembrane protein function.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202300203DOI Listing

Publication Analysis

Top Keywords

membrane properties
12
lipids proteins
12
photo-lipids light-sensitive
8
biological membranes
8
membrane domains
8
physical properties
8
membrane
6
properties
5
light-sensitive nano-switches
4
nano-switches control
4

Similar Publications

Introduction: Current intestinal models lack the mechanical forces present in the physiological environment, limiting their reliability for nanotoxicology studies. Here, we developed an enhanced Caco-2/HT29-MTX-E12 co-culture model incorporating orbital mechanical stimulation to better replicate intestinal conditions and investigate nanoparticle interactions.

Methods: We established co-cultures under static and dynamic conditions, evaluating their development through multiple approaches including barrier integrity measurements, gene expression analysis, and confocal microscopy.

View Article and Find Full Text PDF

Human induced neural stem/progenitor cells (iNPCs) are a promising source of cells for stem cell-based therapy. The therapeutic potential of human iNPCs has been extensively tested in animal models, including both mouse and monkey models. However, the comprehensive characterization of grafted iNPCs in the brain of non-human primates has been lagged behind.

View Article and Find Full Text PDF

Repairing large bone defects remains a significant clinical challenge. Stem cell is of great importance in bone regeneration, and periosteum is rich in periosteal stem cell, which has a great influence on repairing bone defects. Bioengineered periosteum with excellent biocompatibility and stem cell homing capabilities to promote bone regeneration is of great clinical significance.

View Article and Find Full Text PDF

GABA receptor (GABAR) activation is known to alleviate pain by reducing neuronal excitability, primarily through inhibition of high voltage-activated (HVA) calcium (Ca2.2) channels and potentiating G protein-coupled inwardly rectifying potassium (GIRK) channels. Although the analgesic properties of small molecules and peptides have been primarily tested on isolated murine dorsal root ganglion (DRG) neurons, emerging strategies to develop, study, and characterise human pluripotent stem cell (hPSC)-derived sensory neurons present a promising alternative.

View Article and Find Full Text PDF

How to accurately diagnose and treat bacterial infections in vivo remains a huge challenge. Therefore, we have developed a targeted delivery nanosystem by coextruding the pretreated macrophage membrane of with carbon dots (M@CD). The M@CD nanosystem demonstrates potent antibacterial effects both in vivo and in vitro through the generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!