A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A high-index facet gold 12 tip nanostar for an improved electrocatalytic alcohol oxidation reaction with superior CO tolerance. | LitMetric

Direct alcohol fuel cells have a long and promising future, which will require the development of highly active electrocatalysts for alcohol electrooxidation reactions. To this end, high-index facet nanomaterial-based electrocatalysts provide significant promise for the successful oxidation of alcohols. However, the fabrication and exploration of high-index facet nanomaterials are seldom reported, especially in electrocatalytic applications. Herein, we successfully synthesized a high index facet {711} Au 12 tip nanostructure for the first time using a single-chain cationic TDPB surfactant. Electrooxidation results demonstrate that a {711} high-index facet Au 12 tip exhibited much higher electrocatalytic activity (∼10-fold higher) than the {111} low-index facet Au nanoparticles (Au NPs) without being poisoned by CO under identical conditions. Besides, Au 12 tip nanostructures offer appreciable stability and durability. The high electrocatalytic activity with excellent CO tolerance is due to the spontaneous adsorption of the negatively charged -OH on the high-index facet Au 12 tip nanostars, as evidenced by the isothermal titration calorimetry (ITC) analysis. Our findings suggest that high-index facet Au nanomaterials are ideal candidate electrode materials for the electrooxidation reaction of ethanol in fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3nr01645eDOI Listing

Publication Analysis

Top Keywords

high-index facet
24
fuel cells
8
facet nanomaterials
8
electrocatalytic activity
8
facet
7
high-index
6
facet gold
4
gold nanostar
4
nanostar improved
4
electrocatalytic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!