This study aimed to present a novel three-dimensional nanocomposite scaffold using poly-ε-caprolactone (PCL), containing transforming growth factor-beta 1 (TGF-β1)-loaded chitosan-dextran nanoparticles and poly-l-lactic acid (PLLA), to make use of nanofibers and nanoparticles simultaneously. The electrospinning method fabricated a bead-free semi-aligned nanofiber composed of PLLA, PCL, and chitosan-dextran nanoparticles containing TGF-β1. A biomimetic scaffold was constructed with the desired mechanical properties, high hydrophilicity, and high porosity. Transmission electron microscopy findings showed a linear arrangement of nanoparticles along the core of fibers. Based on the results, burst release was not observed. The maximum release was achieved within 4 days, and sustained release was up to 21 days. The qRT-PCR results indicated an increase in the expression of aggrecan and collagen type Ι genes compared to the tissue culture polystyrene group. The results indicated the importance of topography and the sustained release of TGF-β1 from bifunctional scaffolds in directing the stem cell fate in cartilage tissue engineering.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.37574DOI Listing

Publication Analysis

Top Keywords

acid plla
8
plla nanofibers
8
cartilage tissue
8
tissue engineering
8
chitosan-dextran nanoparticles
8
sustained release
8
poly-ε-caprolactone pcl/poly-l-lactic
4
pcl/poly-l-lactic acid
4
nanofibers loaded
4
loaded nanoparticles-containing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!