Bacteria containing ice-nucleating proteins (INPs) evolved in nature to nucleate ice at the high sub-zero ambiance. The ability of the INPs to induce order in the hydration layer and their aggregation propensity appear to be key factors of their ice nucleation abilities. However, the mechanism of the process of ice nucleation by INPs is yet to be understood clearly. Here, we have performed all-atom molecular dynamics simulations and analyzed the structure and dynamics of the hydration layer around the proposed ice-nucleating surface of a model INP. Results are compared with the hydration of a topologically similar non-ice-binding protein (non-IBP) and another ice-growth inhibitory antifreeze protein (sbwAFP). We observed that the hydration structure around the ice-nucleating surface of INP is highly ordered and the dynamics of the hydration water are slower, compared to the non-IBP. Even the ordering of the hydration layer is more evident around the ice-binding surface of INP, compared to the antifreeze protein sbwAFP. Particularly with increasing repeat units of INP, we observe an increased population of ice-like water. Interestingly, the distances between the hydroxyl groups of the threonine ladder and its associated channel water of the ice-binding surface (IBS) of INP in the and direction mimic the oxygen atom distances of the basal plane of hexagonal ice. However, the structural synergies between the hydroxyl group distances of the threonine ladder and its associated channel water of the IBS of sbwAFP and oxygen atom distances of the basal plane are less evident. This difference makes the IBS of the INP a better template for ice nucleation than AFP, although both of them bind to the ice surface efficiently.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.3c01641DOI Listing

Publication Analysis

Top Keywords

hydration layer
12
ice nucleation
12
hydration water
8
ice-nucleating proteins
8
dynamics hydration
8
ice-nucleating surface
8
inp compared
8
antifreeze protein
8
protein sbwafp
8
surface inp
8

Similar Publications

Understanding the permeation of drugs through the intercellular lipid matrix of the stratum corneum layer of skin is crucial for effective transdermal delivery. Molecular dynamics simulations can provide molecular insights into the permeation process. In this study, we developed a new atomistic model representing the multilamellar arrangement of lipids in the stratum corneum intercellular space for permeation studies.

View Article and Find Full Text PDF

The development of aqueous zinc metal batteries (AZMBs) is hampered by dendrites and side reactions induced by reactive HO. In this study, a hydrated eutectic electrolyte with restrictive water consisting of zinc trifluoromethanesulfonate (Zn(OTf)), 1,3-propanediol (PDO), and water is developed to improve the stability of the anode/electrolyte interface in AZMBs via the formation of a water-deficient interface. Additionally, PDO participates in the Zn solvation structure and inhibits the movement of water molecules.

View Article and Find Full Text PDF

Microscopic insights into the effects of interfacial dynamics and nanoconfinement on characteristics of calcium carbonate clusters within two-dimensional nanochannels.

Phys Chem Chem Phys

January 2025

College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China.

Herein, the interfacial effects on calcium carbonate clustering within two-dimensional (2D) graphene nanochannels were systematically investigated using molecular dynamics simulations. The distribution characteristics of the ions at the interface can be attributed to the ordered water layers within the 2D nanochannels. The orientation of CO is approximately perpendicular to the interface, which can be attributed to hydrogen bonding and its association with Ca at the interface region.

View Article and Find Full Text PDF

Background: Intradermal injection of CPM-HA20G, a low-viscoelasticity hyaluronic acid (HA) dermal filler with glycerol, has been shown to be effective for facial rejuvenation in Caucasians, but research in Asians is limited.

Aims: This study aimed to evaluate the effectiveness and safety of CPM-HA20G in enhancing facial skin quality in Korean women using a protocol developed by local aesthetic experts.

Patients/methods: In this 24-week prospective, single-arm, open-label study, 20 women received CPM-HA20G injections in the immediate subdermal layer on the anterior cheek (1 mL per side; total 2 mL) in three sessions every 4 weeks.

View Article and Find Full Text PDF

Controllable synthesis of nonlayered high-κ MnO single-crystal thin films for 2D electronics.

Nat Commun

January 2025

State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Two-dimensional (2D) materials have been identified as promising candidates for future electronic devices. However, high dielectric constant (κ) materials, which can be integrated with 2D semiconductors, are still rare. Here, we report a hydrate-assisted thinning chemical vapor deposition (CVD) technique to grow manganese oxide (MnO) single crystal nanosheets, enabled by a strategy to minimize the substrate lattice mismatch and control the growth kinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!