A metal-organic framework, SDMOF-1, with rigid pores of about 3.4 Å, which is appropriate for accommodating CH molecules, exhibits high CH adsorption capacity and great separation capability of the CH/CH mixture. This work provides a new method to design aliphatic MOFs with a molecular sieving effect to realize efficient gas separation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3dt01419c | DOI Listing |
Nat Commun
December 2024
Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
Two-dimensional (2D) metal-organic framework (MOF) nanosheet membranes hold promise for exact molecular transfer due to their structural diversity and well-defined in-plane nanochannels. However, achieving precise regulation of stacking modes between neighboring nanosheets in membrane applications and understanding its influence on separation performance remains unrevealed and challenging. Here, we propose a strategy for accurately controlling the stacking modes of MOF nanosheets via linker polarity regulation.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia.
Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware DE 19716, United States.
Zeolite coatings are studied as molecular sieves for membrane separation, membrane reactors, and chemical sensor applications. They are also studied as anticorrosive films for metals and alloys, antimicrobial and hydrophobic films for heating, ventilation, and air conditioning, and dielectrics for semiconductor applications. Zeolite coatings are synthesized by hydrothermal, ionothermal, and dry-gel conversion approaches, which require high process temperatures and lengthy times (ranging from hours to days).
View Article and Find Full Text PDFGels
December 2024
Horváth Csaba Memorial Laboratory of Bioseparation Sciences, Research Center for Molecular Medicine, Faculty of Medicine, Doctoral School of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
Hydrogels like agarose have long been used as sieving media for the electrophoresis-based analysis of biopolymers. During gelation, the individual agarose strands tend to form hydrogen-bond mediated double-helical structures, allowing thermal reversibility and adjustable pore sizes for molecular sieving applications. The addition of tetrahydroxyborate to the agarose matrix results in transitional chemical cross-linking, offering an additional pore size adjusting option.
View Article and Find Full Text PDFAmong the most selective catalytic systems for the hydroisomerization of C-paraffins, catalytic systems based on SAPO-11 are quite promising. In order to increase the activity and selectivity of these bifunctional catalysts, it is necessary to reduce the diffusion restrictions for the reacting molecules and their products in the microporous structure of SAPO-11 by reducing the crystal size. To solve this problem, we have studied the influence of different templates (diethylamine, dipropylamine, diisopropylamine, and dibutylamine) on the physicochemical properties of reaction gels and SAPO-11 silicoaluminophosphates during their crystallization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!