To enhance the efficacy of photothermal therapy (PTT) at tumor sites, we designed a reactive oxygen species (ROS)-responsive gold nanoparticle (AuNP)-based nanosystem in which azide-decorated AuNPs (N@AuNPs) and diselenide-coated alkyne-decorated AuNPs (Se/Ak@AuNPs) were separately prepared for selective clicking into nanoclusters when exposed to ROS. Se/Ak@AuNPs were dual-functionalized with alkyne moieties and diselenide linkers embedded in a long chain of polyethylene glycol (PEG) to enable the alkyne moieties of Se/Ak@AuNPs to be inaccessible to the azide moieties of N@AuNPs owing to steric hindrance. At tumor sites where the ROS level is elevated due to the increased metabolic activity, cellular receptor signaling, mitochondrial dysfunction, and oncogene activity, the diselenide linkers were cleaved, leading to the liberation of the long PEG chains tethered to AuNPs, and the alkyne moieties could be recognized by the surrounding azide moieties to generate a click reaction. The clicked AuNPs formed clustered nanoparticles with increased size. Upon 808 nm laser irradiation, these large clusters of AuNPs significantly enhanced the photothermal conversion efficiency compared with that of isolated AuNPs. studies revealed that the AuNP clusters exhibited a noticeably higher apoptosis rate than AuNPs. Therefore, ROS-responsive clicked AuNP clusters can be a potential tool for PTT enhancement in cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3tb00500cDOI Listing

Publication Analysis

Top Keywords

alkyne moieties
12
reactive oxygen
8
photothermal therapy
8
tumor sites
8
diselenide linkers
8
azide moieties
8
aunp clusters
8
aunps
7
moieties
5
oxygen species-responsive
4

Similar Publications

The mannose receptor (CD206, expressed by the gene ) is a surface marker overexpressed by anti-inflammatory and pro-tumoral macrophages. As such, CD206 macrophages play key roles in the immune response to different pathophysiological conditions and represent a promising diagnostic and therapeutic target. However, methods to specifically target these cells remain challenging.

View Article and Find Full Text PDF

Herein, we report a gold(I)-catalyzed cascade cyclization of azido-alkynes bearing an enol ester moiety, leading to indole-fused eight-membered rings. This method allows for the one-step construction of indole and tetrahydroazocin-4-one via an α-imino gold carbene intermediate. The resulting scaffold would be useful for accessing natural products with an eight-membered ring-fused indole moiety.

View Article and Find Full Text PDF

Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.

View Article and Find Full Text PDF

Copper-Catalyzed Asymmetric Nucleophilic Opening of 1,1,2,2-Tetrasubstituted Donor-Acceptor Cyclopropanes for the Synthesis of α-Tertiary Amines.

J Am Chem Soc

January 2025

State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.

Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.

View Article and Find Full Text PDF

In this present work, we describe the syntheses of a new series of 32 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives (2-13, 15a-15f, 16a-16f, 17a-17f and 19a, 19b, 20a), which constitute a new class of 1H-1,2,3-triazoles. Compounds 15a-15f, 16a-16f, 17a-17f have been prepared by employing "click" reactions between substituted 1H-indole-based meldrum alkynes (11, 12 and 13) and substituted aromatic azides (14a-14f) in the presence of copper iodide (CuI) and Hünig's base. Then, the synthesis of compounds 19, 20 through decomposition of meldrum moiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!