As important place for water storage and supply, drinking-water reservoirs in karst mountain areas play a key role in ensuring human well-being, and its water quality safety has attracted much attention. Source apportionment and ecological risks of heavy metal(loid)s in sediments of drinking-water reservoir are important for water security, public health, and regional water resources management, especially in karst mountain areas where water resources are scarce. To expound the accumulation, potential ecological risks, and sources of heavy metal(loid)s in a drinking-water reservoir in Northwest Guizhou, China, the surface sediments were collected and analyzed based on the combined use of the geo-accumulation index (I), sequential extraction (BCR), ratios of secondary phase and primary phase (RSP), risk assessment code (RAC), modified potential ecological risk index (MRI), as well as the positive matrix factorization methods. The results indicated that the accumulation of Cd in sediments was obvious, with approximately 61.9% of the samples showing moderate to high accumulation levels, followed by Pb, Cu, Ni, and Zn, whereas the As and Cr were at low levels. A large proportion of BCR-extracted acid extractable and reducible fraction were found in Cd (72.5%) and Pb (40.3%), suggesting high bioavailability. The combined results of RSP, RAC, and MRI showed that Cd was the major pollutant in sediments with high potential ecological risk, while the risk of other elements was low. Source apportionment results of heavy metal(loid)s indicated that Cd (75.76%) and Zn (23.1%) mainly originated from agricultural activities; As (69.82%), Cr (50.05%), Cu (33.47%), and Ni (31.87%) were associated with domestic sources related to residents' lives; Cu (52.36%), Ni (44.57%), Cr (34.33%), As (26.51%), Pb (24.77%), and Zn (23.80%) primarily came from natural geological sources; and Pb (47.56%), Zn (22.46%) and Cr (13.92%) might be introduced by mixed sources of traffic and domestic. The contribution ratios of the four sources were 18.41%, 36.67%, 29.48%, and 15.44%, respectively. Overall, priority control factors for pollution in relation to agricultural sources included Cd, while domestic sources are primarily associated with As. It is crucial to place special emphasis on the impacts of human activities when formulating pollution prevention and control measures. The results of this study can provide valuable reference and insights for water resources management and pollution prevention and control strategies in karst mountainous areas.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10653-023-01676-8DOI Listing

Publication Analysis

Top Keywords

heavy metalloids
16
source apportionment
12
karst mountain
12
drinking-water reservoir
12
water resources
12
potential ecological
12
apportionment heavy
8
metalloids sediments
8
risk assessment
8
mountain areas
8

Similar Publications

Plants are increasingly exposed to stress-induced factors, including heavy metals. Zinc, although it is a microelement, at high concentrations can be phytotoxic to plants by limiting their growth and development. The presented research confirmed the inhibition effect of Zn on morphological and physiological parameters in barley plants.

View Article and Find Full Text PDF

Microbial assisted alleviation of nickel toxicity in plants: A review.

Ecotoxicol Environ Saf

January 2025

Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden. Electronic address:

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF

Heavy metal(loid)s accumulation and human health risk assessment in wheat after long-term application of various urban and rural organic fertilizers.

Sci Total Environ

January 2025

Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China. Electronic address:

Composting urban and rural wastes into organic fertilizers for land application is considered the best way to dispose of and recycle waste resources. However, there are some concerns about the long-term effects of applying various organic fertilizers on soils, food safety, and health risks derived from heavy metal(loid)s (HMs). A long-term field experiment was conducted to evaluate the effects of continuous application of chicken manure compost (CM), sewage sludge compost (SSC), and domestic waste compost (DWC) for wheat on the accumulation, transfer, and health risks of HMs.

View Article and Find Full Text PDF

Arsenic in drinking water has been associated with an increased risk of health concerns. This metalloid is ingested and distributed throughout the body, accumulating in several organs, including the testis. In this organ, arsenic disturbs steroidogenesis and spermatogenesis and affects male fertility.

View Article and Find Full Text PDF

Multiresidue Methods Analysis to Detect Contamination of Selected Metals in Honey and Pesticides in Honey and Pollen.

Foods

December 2024

Food Toxicology Unit, Department of Life and Environmental Science, University Campus of Monserrato, University of Cagliari, SS 554, 09042 Cagliari, Italy.

Honey, a natural food with a rich history, is produced by honeybees and other species of bees from nectar, other plant fluids, and honeydew of sap-sucking insects. During foraging, these bees may be exposed to plant protection products (PPPs), metals, and metalloids, potentially leading to residues in honey and hive products that could have a negative impact on human safety. Recognizing the lack of an appropriate methodology for pesticide contamination of honey and other hive products, this research aims to support the need for studies on residues in pollen and bee products for human consumption to establish safe maximum residue levels (MRLs) for consumers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!