Electrostatic field-assisted low-temperature preservation is considered a novel technology, which provides an effective means of extending the shelf-life of meat. This study aimed to investigate the effects of different output time modes of a high voltage electrostatic field (HVEF) on the water holding capacity (WHC) of chilled fresh pork during controlled freezing-point storage. Under a direct current HVEF generator, chilled fresh pork samples were treated by the single, interval, or continuous HVEF treatment, with a control check group receiving no HVEF treatment. It was determined that the WHC of the continuous HVEF treatment higher than the control check group. This difference was proven by analyzing the moisture content, storage loss, centrifugal loss, cooking loss, and nuclear magnetic resonance imaging. Furthermore, the mechanism behind HVEF-assisted controlled freezing-point storage reduced the moisture loss was conducted by examining the changes in the hydration characteristics of myofibrillar protein. The study revealed that myofibrillar proteins exhibit high solubility and low surface hydrophobicity under continuous HVEF. Additionally, continuous HVEF has been demonstrated to effectively maintain the higher WHC and lower hardness of myofibrillar protein gel by inhibiting the water molecule migration. The demonstration of these results showcases the effectiveness of electrostatic fields for the future physical preservation of meat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.meatsci.2023.109269 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!