Mechanical forces are critical for regulating many biological processes such as cell differentiation, proliferation, and death. Probing the continuously changing molecular force through integrin receptors provides insights into the molecular mechanism of rigidity sensing in cells; however, the force information is still limited. Here, we built a coil-shaped DNA origami (DNA nanospring, NS) as a force sensor that reports the dynamic motion of single integrins as well as the magnitude and orientation of the force through integrins in living cells. We monitored the extension with nanometer accuracy and the orientation of the NS linked with a single integrin by the shape of the fluorescence spots. We used acoustic force spectroscopy to estimate the force-extension curve of the NS and determined the force with an ∼10% force error at a broad detectable range from subpicoNewtons (pN) to ∼50 pN. We found single integrins tethered with the NS moved several tens of nanometers, and the contraction and relaxation speeds were load dependent at less than ∼20 pN but robust over ∼20 pN. Fluctuations of the traction force orientation were suppressed with increasing load. Our assay system is a potentially powerful tool for studying mechanosensing at the molecular level.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10373515PMC
http://dx.doi.org/10.1021/acsnano.2c12545DOI Listing

Publication Analysis

Top Keywords

force
10
dna origami
8
single integrin
8
force orientation
8
living cells
8
single integrins
8
programmable dna
4
origami nanospring
4
nanospring reports
4
reports dynamics
4

Similar Publications

Cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of extranodal non-Hodgkin's lymphomas characterised by a cutaneous infiltration of malignant monoclonal T lymphocytes. While this broad spectrum of disease with its varied etiopathogenesis, clinical features and management options are well characterised, an approach from a dermatologist's perspective is lacking in the literature. We strive to elucidate the approach from a clinician's point of view, especially in respect of clinical examination, investigations, staging and management options that are available in the realm of the dermatologists.

View Article and Find Full Text PDF

With 25% of teenagers pregnant by age of 19 and about half of these married before their 18th birth day, Uganda exhibits one of the highest rates of teenage pregnancy and child marriage globally. Comprehensive data on the drivers and barriers to addressing repeat teenage pregnancies and early child marriages remains limited. Using the narrative inquiry approach, the paper explores the key socio-cultural drivers and barriers to addressing repeat teenage pregnancies and early/forced marriages among stakeholders in the districts of Mbale, Kween, Namayingo and Kalangala.

View Article and Find Full Text PDF

Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels.

View Article and Find Full Text PDF

Viromics studies are allowing us to understand not only the enormous diversity of the virosphere, but also the potential threat posed by the emerging viruses. Regarding the latter, the main concern lies in monitoring the presence of RNA viruses, but the zoonotic potential of some DNA viruses, on which we have focused in the present study, should also be highlighted. For this purpose, we analyzed 160 fecal samples from 14 species of small terrestrial mammals, 9 of them belonging to the order .

View Article and Find Full Text PDF

This study addresses the challenges of magnetic circuit coupling and control complexity in active radial magnetic bearings (ARMBs) by systematically investigating the electromagnetic performance of four magnetic pole configurations (NNSS, NSNS, NNNN, and SSSS). Initially, equivalent magnetic circuit modeling and finite element analysis (FEA) were employed to analyze the magnetic circuit coupling phenomena and their effects on the magnetic flux density distribution for each configuration. Subsequently, the air gap flux density and electromagnetic force were quantified under rotor eccentricity caused by unbalanced disturbances, and the dynamic performances of the ARMBs were evaluated for eccentricity along the x-axis and at 45°.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!