Objective: Changes in cartilage contact area and/or contact location after knee injury can initiate and exacerbate cartilage degeneration. Typically, the contralateral knee is used as a surrogate for native cartilage contact patterns on the injured knee. However, symmetry in cartilage contact patterns between healthy knees during high-impact activities is unknown.
Method: Tibiofemoral kinematics were measured on 19 collegiate athletes during fast running and drop jump using dynamic biplane radiography and a validated registration process that matched computed tomography (CT)-based bone models to the biplane radiographs. Cartilage contact area and location were measured with participant-specific magnetic resonance imaging (MRI)-based cartilage models superimposed on the CT-based bone models. Symmetry in cartilage contact area and location was assessed by the absolute side-to-side differences (SSD) within participants.
Results: The SSD in contact area during running (7.7 ± 6.1% and 8.0 ± 4.6% in the medial and lateral compartments, respectively) was greater than during drop jump (4.2 ± 3.7% and 5.7 ± 2.6%, respectively) (95% CI of the difference: medial [2.4%, 6.6%], lateral [1.5%, 4.9%]). The average SSD in contact location was 3.5 mm or less in the anterior-posterior (AP) direction and 2.1 mm or less in the medial-lateral (ML) direction on the femur and tibia for both activities. The SSD in AP contact location on the femur was greater during running than during drop jump (95% CI of the difference: medial [1.6 mm, 3.6 mm], lateral [0.6 mm, 1.9 mm]).
Conclusion: This study provides context for interpreting results from previous studies on tibiofemoral arthrokinematics. Previously reported differences between ligament-repaired and contralateral knee arthrokinematics fall within the range of typical SSDs observed in healthy athletes. Previously reported arthrokinematics differences that exceed SSDs found in these healthy athletes occur only in the presence of anterior cruciate ligament (ACL) deficiency or meniscectomy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.joca.2023.06.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!