A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Climate predicts wildland fire extent across China. | LitMetric

Climate predicts wildland fire extent across China.

Sci Total Environ

School of Environment, Northeast Normal University, Changchun 130024, China; Jilin Province Science and Technology Innovation Center of Agro-meteorological Disaster Risk Assessment and Prevention, Changchun 130024, China; Key Laboratory for Vegetation Ecology, Ministry of Education, Changchun 130024, China; State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, Changchun 130024, China.

Published: October 2023

Wildland fire extent varies seasonally and interannually in response to climatic and landscape-level drivers, yet predicting wildfires remains a challenge. Existing linear models that characterize climate and wildland fire relationships fail to account for non-stationary and non-linear associations, thus limiting prediction accuracy. To account for non-stationary and non-linear effects, we use time-series climate and wildfire extent data from across China with unit root methods, thus providing an approach for improved wildfire prediction. Results from this approach suggest that wildland area burned is sensitive to vapor pressure deficit (VPD) and maximum temperature changes over short and long-term scenarios. Moreover, repeated fires constrain system variability resulting in non-stationarity responses. We conclude that an autoregressive distributed lag (ARDL) approach to dynamic simulation models better elucidates interactions between climate and wildfire compared to more commonly used linear models. We suggest that this approach will provide insights into a better understanding of complex ecological relationships and represents a significant step toward the development of guidance for regional planners hoping to address climate-driven increases in wildfire incidence and impacts.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.164987DOI Listing

Publication Analysis

Top Keywords

wildland fire
12
fire extent
8
linear models
8
account non-stationary
8
non-stationary non-linear
8
climate wildfire
8
climate
4
climate predicts
4
wildland
4
predicts wildland
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!