Tire tread particles (TTP) are environmentally prevalent microplastics and generate toxic aqueous leachate. We determined the total carbon and nitrogen leachate concentrations and chemical profiles from micron (∼32 μm) and centimeter (∼1 cm) TTP leachate over 12 days. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were used to measure the concentration of leached compounds. Nontargeted chemical analysis by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOF-MS) was used to compare the chemical profiles of leachates. After leaching for 12 days, DOC was 4.0 times higher in the micron TTP leachate than in the centimeter TTP leachate, and TDN was 2.6 times higher. The total GC×GC/TOF-MS chromatographic feature peak area was 2.9 times greater in the micron TTP leachate than the centimeter TTP leachate, and similarly, the total relative abundance of 54 tentatively identified compounds was 3.3 times greater. We identified frequently measured tire-related chemicals, such as 6PPD, N-cyclohexyl-N'-phenylurea (CPU), and hexa(methoxymethyl)melamine (HMMM), but nearly 50% of detected chemicals were not previously reported in tire literature or lacked toxicity information. Overall, the results demonstrate that smaller TTP have a greater potential to leach chemicals into aquatic systems, but a significant portion of these chemicals are not well-studied and require further risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envpol.2023.122116 | DOI Listing |
Water Res
December 2024
Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, USA. Electronic address:
Tire tread particles are microplastics (< 5 mm) and leach organic chemicals into aquatic environments. It is important to understand the behavior of tire wear compounds in sunlight-exposed waters in terms of their persistence, removal, and transformation. Therefore, we conducted photolysis experiments with leachates from laboratory-generated tire tread particles (TTP) over 72 h in a solar simulator to evaluate the behavior of leached compounds and fluorescent components over time.
View Article and Find Full Text PDFEnviron Pollut
October 2023
School of Public Health, San Diego State University, San Diego, CA, 92182, USA. Electronic address:
Tire tread particles (TTP) are environmentally prevalent microplastics and generate toxic aqueous leachate. We determined the total carbon and nitrogen leachate concentrations and chemical profiles from micron (∼32 μm) and centimeter (∼1 cm) TTP leachate over 12 days. Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were used to measure the concentration of leached compounds.
View Article and Find Full Text PDFEnviron Geochem Health
October 2019
Public Health Department, School of Medicine, Universidad Industrial de Santander, Carrera 32 No. 29-31 Oficina 310, Bucaramanga, Santander, Colombia.
The contamination of the Sonora River with 40,000 m of toxic leachate released from a copper mine on August 6, 2014, was considered the worst environmental disaster of the mining industry in Mexico, exceeding safety levels in the concentrations of heavy metals and arsenic. To explore the potential association of the toxic release with subfecundity, by comparing time to pregnancy (TTP) of women with different levels of exposure at municipalities located along the Sonora River watershed, just 35 km south of the Arizona-Mexico border. Data from 235 pregnancies were included in a retrospective cohort study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!