Constructing the pharyngula: Connecting the primary axial tissues of the head with the posterior axial tissues of the tail.

Cells Dev

Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA. Electronic address:

Published: December 2023

The pharyngula stage of vertebrate development is characterized by stereotypical arrangement of ectoderm, mesoderm, and neural tissues from the anterior spinal cord to the posterior, yet unformed tail. While early embryologists over-emphasized the similarity between vertebrate embryos at the pharyngula stage, there is clearly a common architecture upon which subsequent developmental programs generate diverse cranial structures and epithelial appendages such as fins, limbs, gills, and tails. The pharyngula stage is preceded by two morphogenetic events: gastrulation and neurulation, which establish common shared structures despite the occurrence of cellular processes that are distinct to each of the species. Even along the body axis of a singular organism, structures with seemingly uniform phenotypic characteristics at the pharyngula stage have been established by different processes. We focus our review on the processes underlying integration of posterior axial tissue formation with the primary axial tissues that creates the structures laid out in the pharyngula. Single cell sequencing and novel gene targeting technologies have provided us with new insights into the differences between the processes that form the anterior and posterior axis, but it is still unclear how these processes are integrated to create a seamless body. We suggest that the primary and posterior axial tissues in vertebrates form through distinct mechanisms and that the transition between these mechanisms occur at different locations along the anterior-posterior axis. Filling gaps that remain in our understanding of this transition could resolve ongoing problems in organoid culture and regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10756936PMC
http://dx.doi.org/10.1016/j.cdev.2023.203866DOI Listing

Publication Analysis

Top Keywords

axial tissues
16
pharyngula stage
16
posterior axial
12
primary axial
8
axial
5
tissues
5
posterior
5
pharyngula
5
processes
5
constructing pharyngula
4

Similar Publications

Introduction: Benign and malignant myxoid soft tissue tumors have shared clinical, imaging, and histologic features that can make diagnosis challenging. The purpose of this study is comparison of the diagnostic performance of a radiomic based machine learning (ML) model to musculoskeletal radiologists.

Methods: Manual segmentation of 90 myxoid soft tissue tumors (45 myxomas and 45 myxofibrosarcomas) was performed on axial T1, and T2FS or STIR magnetic resonance imaging sequences.

View Article and Find Full Text PDF

Background & Objective: Currently, there are many implants in clinical use, making it hard to choose the right one for the patient. The success rate of an implant depends on its diameter, length, and direction of insertion in bone. In implant dentistry, Finite Element Analysis (FEA) simulates intraoral conditions in vitro and analyzes the effects of implant material, diameter, size, and other components related to oral structure on the implant and peri-implant tissues.

View Article and Find Full Text PDF

Purpose: We investigated the feasibility and advantages of using non-contrast CT calcium score (CTCS) images to assess pericoronary adipose tissue (PCAT) and its association with major adverse cardiovascular events (MACE). PCAT features from coronary computed tomography angiography (CCTA) have been shown to be associated with cardiovascular risk but are potentially confounded by iodine. If PCAT in CTCS images can be similarly analyzed, it would avoid this issue and enable its inclusion in formal risk assessment from readily available, low-cost CTCS images.

View Article and Find Full Text PDF

Axial radiographic spondyloarthritis (r-axSpA) is a chronic inflammatory joint disease that leads to a considerable decline in the quality of life of patients by impairment of function and mobility, which, in turn, brings about a deterioration of both physical and mental health. Osteoporosis (OP) is a significant issue in the course of r-axSpA. Fractures resulting from OP complicate the treatment of the underlying disease and reduce the quality of life of patients.

View Article and Find Full Text PDF

Clinical and imaging characteristics of 135 cases of infectious sacroiliitis: a retrospective cohort study in China.

Clin Rheumatol

January 2025

Department of Rheumatology and Immunology, The First Medical Center, People Liberation Army General Hospital, Beijing, 100853, China.

To study the clinical, imaging, and computed tomography (CT)-guided biopsy pathology of patients with infectious sacroiliitis (ISI). We retrospectively analysed 135 patients diagnosed with ISI between 2008 and 2020, comprehensively evaluating clinical characteristics, laboratory test outcomes, pathological examination results, and magnetic resonance images (MRI). Among the 135 patients with ISI, 90 (66.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!