Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Snake venom metalloproteinases (SVMPs), which are a critical component of viperid and crotalid venoms, play various important roles in the pathogenesis of snakebite envenomation. The SVMPs from elapid venoms are not well elucidated, as compared with those from viperid and crotalid venoms. Atrase A is a nonhemorrhagic P-III SVMP purified from Naja atra venom that possesses only weak fibrinogenolytic activity. In our prior study, we found that atrase A detached adherent cells from the substrate. In this work, we investigated further the effect and mechanism of atrase A on endothelial cells. Oxidative damage, inflammatory mediators, apoptosis, and activation of the NF-κB and MAPK signaling pathways were measured after HMEC-1 cells were exposed to atrase A. The results showed that HMEC-1 cells released inflammatory mediators, exihibited oxidative damage and apoptosis after exposure to atrase A. The Western blot analysis results revealed that atrase A increased Bax/Bcl-2 and caspase-3 levels and activated the NF-κB and MAPK signaling pathways in endothelial cells. The effects on endothelial cells were nearly completely abolished after atrase A was treated with ethylenediamine tetraacetic acid. These results showed that atrase A led to an inflammatory response, cellular injury and apoptosis in endothelial cells, and this effect was due to its metalloproteinase domain. The study contributes to a better understanding of the structures and functions of cobra venom P-III class metalloproteinases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.toxicon.2023.107210 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!