Plants interact extensively with their neighbors, but the evolutionary consequences of variation in neighbor identity are not well understood. Seedling traits are likely to experience selection that depends on the identity of neighbors because they influence competitive outcomes. To explore this, we evaluated selection on seed mass and emergence time in two California grasses, the native perennial Stipa pulchra, and the non-native annual Bromus diandrus, in the field with six other native and non-native neighbor grasses in single- and mixed-species treatments. We also quantified characteristics of each neighbor treatment to further investigate factors influencing their effects on fitness and phenotypic selection. Selection favored larger seeds in both focal species and this was largely independent of neighbor identity. Selection generally favored earlier emergence in both focal species, but neighbor identity influenced the strength and direction of selection on emergence time in S. pulchra, but not B. diandrus. Greater light interception, higher soil moisture, and greater productivity of neighbors were associated with more intense selection for earlier emergence and larger seeds. Our findings suggest that changes in plant community composition can alter patterns of selection in seedling traits, and that these effects can be associated with measurable characteristics of the community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/evolut/qpad119 | DOI Listing |
Soil salinization poses a significant ecological and environmental challenge both in China and across the globe. Plant growth-promoting rhizobacteria (PGPR) enhance plants' resilience against biotic and abiotic stresses, thereby playing a vital role in soil improvement and vegetation restoration efforts. PGPR assist plants in thriving under salt stress by modifying plant physiology, enhancing nutrient absorption, and synthesizing plant hormones.
View Article and Find Full Text PDFFront Plant Sci
January 2025
National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.
Seed priming can significantly enhance the tolerance of soybean against different environmental stresses by improving seed water uptake and modulating stress-response mechanisms. In particular, seed priming with sodium carboxymethylcellulose (SCMC) and gum Arabic (GA) can support seeds to withstand extreme conditions better, promoting more consistent germination and robust seedling establishment, which is crucial for achieving stable agricultural yields. The present study investigated the effects of seed priming using a combination of SCMC and GA (10% CG) on the germination, growth, and biochemical responses of six soybean varieties under drought and flooding stress conditions.
View Article and Find Full Text PDFJ Basic Microbiol
January 2025
Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
Acinetobacter has been recognized as a versatile plant growth promoting (PGP) rhizobacteria (PGPR) that produce multiple PGP traits. The present study was conducted to formulate an efficient and stable liquid bacterial inoculant (LBI) of Acinetobacter lwoffii strain PAU_31LN. In the current investigation, total 16 endophytic bacteria were isolated from cotton leaves and evaluated for plant growth-promoting features such as production of phytohormones, mineral solubilization, siderophore production, hydrogen cyanide (HCN) production, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity.
View Article and Find Full Text PDFCurr Biol
January 2025
Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang 261000, Shandong, China. Electronic address:
As one of the most influential environmental factors, light fundamentally shapes plant physiology and growth traits. The hypocotyl is critical for the morphological establishment of the seedling, and its length displays remarkable plasticity upon perception of changes in the light conditions. Although remodeling of the primary cell walls is well-documented to play an important role in hypocotyl growth, how the hypocotyl elongation rate is swiftly repressed at the dark-to-light transition remains elusive.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Root system architecture (RSA) plays an important role in plant adaptation to drought stress. However, the genetic basis of RSA in sorghum has not been adequately elucidated. This study aimed to investigate the genetic bases of RSA traits through genome-wide association studies (GWAS) and determine genomic prediction (GP) accuracy in sorghum landraces at the seedling stage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!