The environmental occurrence and impact of dissolved organic matter leached from microplastics (MP-DOM) has been the subject of increased research interest. Commercial plastics, which typically contain additives, are subject to natural weathering processes and can eventually lose their additives. However, the effects of organic additives in commercial microplastics (MPs) on the release of MP-DOM under UV irradiation remain poorly understood. In this study, four polymer MPs (polyethylene; PE, polypropylene; PP, polystyrene; PS, polyvinylchloride; PVC) and four commercial MPs, including a PE zip bag, a PP facial mask, a PVC sheet, Styrofoam, were subjected to leaching under UV irradiation, and the MP-DOM was characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and fluorescence excitation emission matrix-parallel factor analysis (EEM-PARAFAC). Although UV light promoted the leaching of MP-DOM from both MP groups, the amount released was more pronounced for the polymer MPs than for the commercial MPs. The commercial MP-DOM was characterized by a prominent protein/phenol-like component (C1), while a humic-like component (C2) prevailed in the polymer MPs. FT-ICR-MS identified a higher number of unique molecular formulas for the commercial than for the polymer MP-DOM. The unique molecular formulas of commercial MP-DOM included known organic additives and other breakdown products, while the polymer MP-DOM featured more pronounced unsaturated carbon structures in its identified unique formulas. Several molecular-level parameters showed significant correlations with fluorescence properties, such as CHO formulas (%) with C1 and condensed aromatic structure (CAS-like, %) with C2, suggesting the potential application of fluorescent components as an optical descriptor for the complex molecular-level composition. This study also revealed the possible high environmental reactivity of both polymer MPs and fully weathered plastics due to the unsaturated structures generated in sunlit environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120272 | DOI Listing |
J Hazard Mater
January 2025
School of Geographical Science, Harbin Normal University, Harbin 150025, China.
Microplastics (MPs) pose an emerging threat to vegetable growing soils in Harbin, which have a relatively high abundance (11,065 n/kg) with 17.26 of potential ecological risk of single polymer hazard (EI) and 33.92 of potential ecological risk index (PERI).
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Mu Gamma Consultants Pvt. Ltd, Gurgaon, India, 122018.
Microplastics (MPs) have become a notable concern and are released into the environment through the disposal or fragmentation of large plastics. Rivers have been the major pathways for MPs present in the oceans, which significantly affects the marine environment. In the current study, water samples were collected from the upper stream and downstream of Damanganga and Tapi rivers across different sites in the state of Gujarat, India for exploration of MPs contamination.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Department Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio", Via dei Vestini, 66100 Chieti, Italy.
The indiscriminate use of plastic products and their inappropriate management and disposal contribute to the increasing presence and accumulation of this material in all environmental zones. The chemical properties of plastics and their resistance to natural degradation lead over time to the production of microplastics (MPs) and nanoplastics, which are dispersed in soil, water, and air and can be absorbed by plants, including those grown for food. In agriculture, MPs can come from many sources (mulch film, tractor tires, compost, fertilizers, and pesticides).
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
School of Applied Engineering and Technology, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.
The production of plastics and associated products, including microplastics (MPs), has been surging over the past several decades and now poses a grave environmental threat. This is because when not appropriately recycled, incinerated, or disposed of in fully contained landfills, plastic waste manifests as a potent pollutant, with vast amounts finding their way into oceans annually, adversely impacting marine life and ecosystems. Additionally, research also confirms there are direct impacts from MPs on water, air, and soil, impacting ecosystem and human health.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria, San Nicolás de los Garza 66455, Nuevo León, Mexico.
Plastic pollution, particularly from microplastics (MPs) and nanoplastics (NPs), has become a critical environmental and health concern due to their widespread distribution, persistence, and potential toxicity. MPs and NPs originate from primary sources, such as cosmetic microspheres or synthetic fibers, and secondary fragmentation of larger plastics through environmental degradation. These particles, typically less than 5 mm, are found globally, from deep seabeds to human tissues, and are known to adsorb and release harmful pollutants, exacerbating ecological and health risks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!